"zeroth-order optimization" Papers

23 papers found

Addax: Utilizing Zeroth-Order Gradients to Improve Memory Efficiency and Performance of SGD for Fine-Tuning Language Models

Zeman Li, Xinwei Zhang, Peilin Zhong et al.

ICLR 2025arXiv:2410.06441
11
citations

Collaborative Discrete-Continuous Black-Box Prompt Learning for Language Models

Hualin Zhang, Haozhen Zhang, Zhekai Liu et al.

ICLR 2025

CONGO: Compressive Online Gradient Optimization

Jeremy Carleton, Prathik Vijaykumar, Divyanshu Saxena et al.

ICLR 2025arXiv:2407.06325

Hybrid Decentralized Optimization: Leveraging Both First- and Zeroth-Order Optimizers for Faster Convergence

Shayan Talaei, Matin Ansaripour, Giorgi Nadiradze et al.

AAAI 2025paperarXiv:2210.07703
1
citations

On the Optimal Construction of Unbiased Gradient Estimators for Zeroth-Order Optimization

Shaocong Ma, Heng Huang

NEURIPS 2025spotlightarXiv:2510.19953
2
citations

PseuZO: Pseudo-Zeroth-Order Algorithm for Training Deep Neural Networks

Pengyun Yue, Xuanlin Yang, Mingqing Xiao et al.

NEURIPS 2025

Revisiting Zeroth-Order Optimization: Minimum-Variance Two-Point Estimators and Directionally Aligned Perturbations

Shaocong Ma, Heng Huang

ICLR 2025arXiv:2510.19975
12
citations

SECA: Semantically Equivalent and Coherent Attacks for Eliciting LLM Hallucinations

Buyun Liang, Liangzu Peng, Jinqi Luo et al.

NEURIPS 2025arXiv:2510.04398

Second-Order Fine-Tuning without Pain for LLMs: A Hessian Informed Zeroth-Order Optimizer

Yanjun Zhao, Sizhe Dang, Haishan Ye et al.

ICLR 2025
30
citations

SharpZO: Hybrid Sharpness-Aware Vision Language Model Prompt Tuning via Forward-Only Passes

Yifan Yang, Zhen Zhang, Rupak Vignesh Swaminathan et al.

NEURIPS 2025arXiv:2506.20990
1
citations

Sparse MeZO: Less Parameters for Better Performance in Zeroth-Order LLM Fine-Tuning

Yong Liu, Zirui Zhu, Chaoyu Gong et al.

NEURIPS 2025arXiv:2402.15751
37
citations

Stochastic Regret Guarantees for Online Zeroth- and First-Order Bilevel Optimization

Parvin Nazari, Bojian Hou, Davoud Ataee Tarzanagh et al.

NEURIPS 2025arXiv:2511.01126
2
citations

Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient

Hao Di, Haishan Ye, Yueling Zhang et al.

ICML 2024spotlightarXiv:2405.17761
2
citations

Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes

Zhen Qin, Daoyuan Chen, Bingchen Qian et al.

ICML 2024arXiv:2312.06353
61
citations

Gradient Compressed Sensing: A Query-Efficient Gradient Estimator for High-Dimensional Zeroth-Order Optimization

Ruizhong Qiu, Hanghang Tong

ICML 2024arXiv:2405.16805
11
citations

Improved Dimensionality Dependence for Zeroth-Order Optimisation over Cross-Polytopes

Weijia Shao

ICML 2024

Performative Prediction with Bandit Feedback: Learning through Reparameterization

Yatong Chen, Wei Tang, Chien-Ju Ho et al.

ICML 2024arXiv:2305.01094
12
citations

Quantum Algorithm for Online Exp-concave Optimization

Jianhao He, Chengchang Liu, Xutong Liu et al.

ICML 2024arXiv:2410.19688
3
citations

Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark

Yihua Zhang, Pingzhi Li, Junyuan Hong et al.

ICML 2024arXiv:2402.11592
107
citations

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Chang He, Zhaoye Pan, Xiao Wang et al.

ICML 2024arXiv:2405.05713
8
citations

Variance-reduced Zeroth-Order Methods for Fine-Tuning Language Models

Tanmay Gautam, Youngsuk Park, Hao Zhou et al.

ICML 2024arXiv:2404.08080
39
citations

Zeroth-Order Methods for Constrained Nonconvex Nonsmooth Stochastic Optimization

Zhuanghua Liu, Cheng Chen, Luo Luo et al.

ICML 2024

ZO-AdaMU Optimizer: Adapting Perturbation by the Momentum and Uncertainty in Zeroth-Order Optimization

Shuoran Jiang, Qingcai Chen, Yang Xiang et al.

AAAI 2024paperarXiv:2312.15184
21
citations