Poster "causal discovery" Papers

26 papers found

A Conditional Independence Test in the Presence of Discretization

Boyang Sun, Yu Yao, Guang-Yuan Hao et al.

ICLR 2025arXiv:2404.17644
2
citations

A Meta-Learning Approach to Bayesian Causal Discovery

Anish Dhir, Matthew Ashman, James Requeima et al.

ICLR 2025arXiv:2412.16577
12
citations

A Robust Method to Discover Causal or Anticausal Relation

Yu Yao, Yang Zhou, Bo Han et al.

ICLR 2025
1
citations

Causal Discovery via Bayesian Optimization

Bao Duong, Sunil Gupta, Thin Nguyen

ICLR 2025arXiv:2501.14997
1
citations

Causal Reasoning and Large Language Models: Opening a New Frontier for Causality

Chenhao Tan, Robert Ness, Amit Sharma et al.

ICLR 2025arXiv:2305.00050
403
citations

Differentiable Structure Learning and Causal Discovery for General Binary Data

Chang Deng, Bryon Aragam

NEURIPS 2025arXiv:2509.21658

Efficient and Trustworthy Causal Discovery with Latent Variables and Complex Relations

Xiuchuan Li, Tongliang Liu

ICLR 2025
1
citations

Prediction-Powered E-Values

Daniel Csillag, Claudio Struchiner, Guilherme Tegoni Goedert

ICML 2025arXiv:2502.04294
9
citations

Revealing Multimodal Causality with Large Language Models

Jin Li, Shoujin Wang, Qi Zhang et al.

NEURIPS 2025arXiv:2509.17784

Score-informed Neural Operator for Enhancing Ordering-based Causal Discovery

Jiyeon Kang, Songseong Kim, Chanhui Lee et al.

NEURIPS 2025arXiv:2508.12650

Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes

Georg Manten, Cecilia Casolo, Emilio Ferrucci et al.

ICLR 2025arXiv:2402.18477
16
citations

The third pillar of causal analysis? A measurement perspective on causal representations

Dingling Yao, Shimeng Huang, Riccardo Cadei et al.

NEURIPS 2025arXiv:2505.17708
1
citations

When Selection Meets Intervention: Additional Complexities in Causal Discovery

Haoyue Dai, Ignavier Ng, Jianle Sun et al.

ICLR 2025arXiv:2503.07302
5
citations

Bivariate Causal Discovery using Bayesian Model Selection

Anish Dhir, Samuel Power, Mark van der Wilk

ICML 2024arXiv:2306.02931
7
citations

Causal Discovery via Conditional Independence Testing with Proxy Variables

Mingzhou Liu, Xinwei Sun, YU QIAO et al.

ICML 2024arXiv:2305.05281
3
citations

Causal Discovery with Fewer Conditional Independence Tests

Kirankumar Shiragur, Jiaqi Zhang, Caroline Uhler

ICML 2024arXiv:2406.01823
9
citations

Causal Structure Recovery with Latent Variables under Milder Distributional and Graphical Assumptions

Xiuchuan Li, Kun Zhang, Tongliang Liu

ICLR 2024
4
citations

Discovering Mixtures of Structural Causal Models from Time Series Data

Sumanth Varambally, Yian Ma, Rose Yu

ICML 2024arXiv:2310.06312
10
citations

Foundations of Testing for Finite-Sample Causal Discovery

Tom Yan, Ziyu Xu, Zachary Lipton

ICML 2024

Jacobian Regularizer-based Neural Granger Causality

Wanqi Zhou, Shuanghao Bai, Shujian Yu et al.

ICML 2024arXiv:2405.08779
10
citations

Learning Causal Dynamics Models in Object-Oriented Environments

Zhongwei Yu, Jingqing Ruan, Dengpeng Xing

ICML 2024arXiv:2405.12615
4
citations

Optimal Kernel Choice for Score Function-based Causal Discovery

Wenjie Wang, Biwei Huang, Feng Liu et al.

ICML 2024arXiv:2407.10132
4
citations

Optimal Transport for Structure Learning Under Missing Data

Vy Vo, He Zhao, Trung Le et al.

ICML 2024arXiv:2402.15255
6
citations

Scalable and Flexible Causal Discovery with an Efficient Test for Adjacency

Alan Amin, Andrew Wilson

ICML 2024arXiv:2406.09177
3
citations

Score-Based Causal Discovery of Latent Variable Causal Models

Ignavier Ng, Xinshuai Dong, Haoyue Dai et al.

ICML 2024

Stable Differentiable Causal Discovery

Achille Nazaret, Justin Hong, Elham Azizi et al.

ICML 2024arXiv:2311.10263
24
citations