Poster "convergence guarantees" Papers

12 papers found

Absorb and Converge: Provable Convergence Guarantee for Absorbing Discrete Diffusion Models

Yuchen Liang, Renxiang Huang, Lifeng LAI et al.

NEURIPS 2025arXiv:2506.02318
6
citations

AdaGrad under Anisotropic Smoothness

Yuxing Liu, Rui Pan, Tong Zhang

ICLR 2025arXiv:2406.15244
14
citations

A Difference-of-Convex Functions Approach to Energy-Based Iterative Reasoning

Daniel Tschernutter, David Diego Castro, Maciej Kasiński

NEURIPS 2025

A Stochastic Approach to the Subset Selection Problem via Mirror Descent

Dan Greenstein, Elazar Gershuni, Ilan Ben-Bassat et al.

ICLR 2025

Discrete Diffusion Models: Novel Analysis and New Sampler Guarantees

Yuchen Liang, Yingbin Liang, Lifeng LAI et al.

NEURIPS 2025arXiv:2509.16756
3
citations

Extragradient Method for $(L_0, L_1)$-Lipschitz Root-finding Problems

Sayantan Choudhury, Nicolas Loizou

NEURIPS 2025arXiv:2510.22421

Globally Optimal Policy Gradient Algorithms for Reinforcement Learning with PID Control Policies

Vipul Sharma, Wesley Suttle, S Sivaranjani

NEURIPS 2025

Understanding outer learning rates in Local SGD

Ahmed Khaled, Satyen Kale, Arthur Douillard et al.

NEURIPS 2025

Detecting Influence Structures in Multi-Agent Reinforcement Learning

Fabian Raoul Pieroth, Katherine Fitch, Lenz Belzner

ICML 2024

Fair Classification with Partial Feedback: An Exploration-Based Data Collection Approach

Vijay Keswani, Anay Mehrotra, L. Elisa Celis

ICML 2024arXiv:2402.11338
3
citations

FedBAT: Communication-Efficient Federated Learning via Learnable Binarization

Shiwei Li, Wenchao Xu, Haozhao Wang et al.

ICML 2024arXiv:2408.03215
12
citations

FedLMT: Tackling System Heterogeneity of Federated Learning via Low-Rank Model Training with Theoretical Guarantees

Jiahao Liu, Yipeng Zhou, Di Wu et al.

ICML 2024