Poster "dataset distillation" Papers

25 papers found

Beyond Modality Collapse: Representation Blending for Multimodal Dataset Distillation

xin zhang, Ziruo Zhang, JIAWEI DU et al.

NEURIPS 2025arXiv:2505.14705
3
citations

Beyond Random: Automatic Inner-loop Optimization in Dataset Distillation

Muquan Li, Hang Gou, Dongyang Zhang et al.

NEURIPS 2025arXiv:2510.04838
1
citations

Boost Self-Supervised Dataset Distillation via Parameterization, Predefined Augmentation, and Approximation

Sheng-Feng Yu, Jia-Jiun Yao, Wei-Chen Chiu

ICLR 2025arXiv:2507.21455
1
citations

Dataset Distillation for Pre-Trained Self-Supervised Vision Models

George Cazenavette, Antonio Torralba, Vincent Sitzmann

NEURIPS 2025arXiv:2511.16674
1
citations

Dataset Distillation via Knowledge Distillation: Towards Efficient Self-Supervised Pre-training of Deep Networks

Siddharth Joshi, Jiayi Ni, Baharan Mirzasoleiman

ICLR 2025arXiv:2410.02116
4
citations

DELT: A Simple Diversity-driven EarlyLate Training for Dataset Distillation

Zhiqiang Shen, Ammar Sherif, Zeyuan Yin et al.

CVPR 2025arXiv:2411.19946
11
citations

Distilling Dataset into Neural Field

Donghyeok Shin, HeeSun Bae, Gyuwon Sim et al.

ICLR 2025arXiv:2503.04835
4
citations

Does Training with Synthetic Data Truly Protect Privacy?

Yunpeng Zhao, Jie Zhang

ICLR 2025arXiv:2502.12976
8
citations

Efficient Multimodal Dataset Distillation via Generative Models

Zhenghao Zhao, Haoxuan Wang, Junyi Wu et al.

NEURIPS 2025arXiv:2509.15472
2
citations

Enhancing Dataset Distillation via Non-Critical Region Refinement

Minh-Tuan Tran, Trung Le, Xuan-May Le et al.

CVPR 2025arXiv:2503.18267
4
citations

GIFT: Unlocking Full Potential of Labels in Distilled Dataset at Near-zero Cost

Xinyi Shang, Peng Sun, Tao Lin

ICLR 2025arXiv:2405.14736
9
citations

Group Distributionally Robust Dataset Distillation with Risk Minimization

Saeed Vahidian, Mingyu Wang, Jianyang Gu et al.

ICLR 2025arXiv:2402.04676
9
citations

Heavy Labels Out! Dataset Distillation with Label Space Lightening

Ruonan Yu, Songhua Liu, Zigeng Chen et al.

ICCV 2025arXiv:2408.08201
3
citations

Hierarchical Features Matter: A Deep Exploration of Progressive Parameterization Method for Dataset Distillation

Xinhao Zhong, Hao Fang, Bin Chen et al.

CVPR 2025arXiv:2406.05704
3
citations

Hyperbolic Dataset Distillation

Wenyuan Li, Guang Li, Keisuke Maeda et al.

NEURIPS 2025arXiv:2505.24623
7
citations

Influence-Guided Diffusion for Dataset Distillation

Mingyang Chen, Jiawei Du, Bo Huang et al.

ICLR 2025
19
citations

Towards Stable and Storage-efficient Dataset Distillation: Matching Convexified Trajectory

Wenliang Zhong, Haoyu Tang, Qinghai Zheng et al.

CVPR 2025arXiv:2406.19827
8
citations

Data-to-Model Distillation: Data-Efficient Learning Framework

Ahmad Sajedi, Samir Khaki, Lucy Z. Liu et al.

ECCV 2024arXiv:2411.12841
4
citations

Distill Gold from Massive Ores: Bi-level Data Pruning towards Efficient Dataset Distillation

YUE XU, Yong-Lu Li, Kaitong Cui et al.

ECCV 2024arXiv:2305.18381
8
citations

Large Scale Dataset Distillation with Domain Shift

Noel Loo, Alaa Maalouf, Ramin Hasani et al.

ICML 2024

Low-Rank Similarity Mining for Multimodal Dataset Distillation

Yue Xu, Zhilin Lin, Yusong Qiu et al.

ICML 2024arXiv:2406.03793
11
citations

SelMatch: Effectively Scaling Up Dataset Distillation via Selection-Based Initialization and Partial Updates by Trajectory Matching

Yongmin Lee, Hye Won Chung

ICML 2024arXiv:2406.18561
18
citations

Teddy: Efficient Large-Scale Dataset Distillation via Taylor-Approximated Matching

Ruonan Yu, Songhua Liu, Jingwen Ye et al.

ECCV 2024arXiv:2410.07579
13
citations

Unlocking the Potential of Federated Learning: The Symphony of Dataset Distillation via Deep Generative Latents

Yuqi Jia, Saeed Vahidian, Jingwei Sun et al.

ECCV 2024arXiv:2312.01537
18
citations

What is Dataset Distillation Learning?

William Yang, Ye Zhu, Zhiwei Deng et al.

ICML 2024arXiv:2406.04284
13
citations