"disentangled representations" Papers

11 papers found

Can Diffusion Models Disentangle? A Theoretical Perspective

Liming Wang, Muhammad Jehanzeb Mirza, Yishu Gong et al.

NEURIPS 2025arXiv:2504.00220

Disentanglement Beyond Static vs. Dynamic: A Benchmark and Evaluation Framework for Multi-Factor Sequential Representations

Tal Barami, Nimrod Berman, Ilan Naiman et al.

NEURIPS 2025arXiv:2510.17313
2
citations

Disentangling Representations through Multi-task Learning

Pantelis Vafidis, Aman Bhargava, Antonio Rangel

ICLR 2025arXiv:2407.11249
5
citations

Dreamweaver: Learning Compositional World Models from Pixels

Junyeob Baek, Yi-Fu Wu, Gautam Singh et al.

ICLR 2025arXiv:2501.14174
3
citations

Efficient Distribution Matching of Representations via Noise-Injected Deep InfoMax

Ivan Butakov, Alexander Semenenko, Alexander Tolmachev et al.

ICLR 2025arXiv:2410.06993
3
citations

Enhancing Uncertainty Estimation and Interpretability with Bayesian Non-negative Decision Layer

XINYUE HU, Zhibin Duan, Bo Chen et al.

ICLR 2025arXiv:2505.22199
3
citations

scMRDR: A scalable and flexible framework for unpaired single-cell multi-omics data integration

Jianle Sun, Chaoqi Liang, Ran Wei et al.

NEURIPS 2025spotlightarXiv:2510.24987
2
citations

SmartCLIP: Modular Vision-language Alignment with Identification Guarantees

Shaoan Xie, Lingjing Kong, Yujia Zheng et al.

CVPR 2025highlightarXiv:2507.22264
4
citations

DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations

Tianhao Qi, Shancheng Fang, Yanze Wu et al.

CVPR 2024highlightarXiv:2403.06951
90
citations

Disentanglement Learning via Topology

Nikita Balabin, Daria Voronkova, Ilya Trofimov et al.

ICML 2024arXiv:2308.12696
3
citations

Prometheus: Out-of-distribution Fluid Dynamics Modeling with Disentangled Graph ODE

Hao Wu, Huiyuan Wang, kun wang et al.

ICML 2024oral