Poster "distribution shifts" Papers

44 papers found

A Multimodal BiMamba Network with Test-Time Adaptation for Emotion Recognition Based on Physiological Signals

Ziyu Jia, Tingyu Du, Zhengyu Tian et al.

NEURIPS 2025

Bridging Critical Gaps in Convergent Learning: How Representational Alignment Evolves Across Layers, Training, and Distribution Shifts

Chaitanya Kapoor, Sudhanshu Srivastava, Meenakshi Khosla

NEURIPS 2025arXiv:2502.18710
1
citations

CONDA: Adaptive Concept Bottleneck for Foundation Models Under Distribution Shifts

Jihye Choi, Jayaram Raghuram, Yixuan Li et al.

ICLR 2025

Conformal Prediction under Lévy-Prokhorov Distribution Shifts: Robustness to Local and Global Perturbations

Liviu Aolaritei, Julie Zhu, Oliver Wang et al.

NEURIPS 2025

D2SA: Dual-Stage Distribution and Slice Adaptation for Efficient Test-Time Adaptation in MRI Reconstruction

Lipei Zhang, Rui Sun, Zhongying Deng et al.

NEURIPS 2025arXiv:2503.20815

Directional Gradient Projection for Robust Fine-Tuning of Foundation Models

Chengyue Huang, Junjiao Tian, Brisa Maneechotesuwan et al.

ICLR 2025arXiv:2502.15895
8
citations

Enhancing Deep Batch Active Learning for Regression with Imperfect Data Guided Selection

Yinjie Min, Furong Xu, Xinyao Li et al.

NEURIPS 2025

Exploring the Noise Robustness of Online Conformal Prediction

HuaJun Xi, Kangdao Liu, Hao Zeng et al.

NEURIPS 2025arXiv:2501.18363
2
citations

Matcha: Mitigating Graph Structure Shifts with Test-Time Adaptation

Wenxuan Bao, Zhichen Zeng, Zhining Liu et al.

ICLR 2025arXiv:2410.06976
5
citations

MINGLE: Mixture of Null-Space Gated Low-Rank Experts for Test-Time Continual Model Merging

Zihuan Qiu, Yi Xu, Chiyuan He et al.

NEURIPS 2025arXiv:2505.11883
5
citations

Mint: A Simple Test-Time Adaptation of Vision-Language Models against Common Corruptions

Wenxuan Bao, Ruxi Deng, Jingrui He

NEURIPS 2025arXiv:2510.22127
1
citations

OCRT: Boosting Foundation Models in the Open World with Object-Concept-Relation Triad

Luyao Tang, Chaoqi Chen, Yuxuan Yuan et al.

CVPR 2025arXiv:2503.18695
5
citations

Quantifying Uncertainty in the Presence of Distribution Shifts

Yuli Slavutsky, David Blei

NEURIPS 2025arXiv:2506.18283
1
citations

RA-TTA: Retrieval-Augmented Test-Time Adaptation for Vision-Language Models

Youngjun Lee, Doyoung Kim, Junhyeok Kang et al.

ICLR 2025
5
citations

Rethinking Fair Representation Learning for Performance-Sensitive Tasks

Charles Jones, Fabio De Sousa Ribeiro, Mélanie Roschewitz et al.

ICLR 2025arXiv:2410.04120
7
citations

Rethinking Graph Prompts: Unraveling the Power of Data Manipulation in Graph Neural Networks

Chenyi Zi, Bowen LIU, Xiangguo SUN et al.

ICLR 2025

TS-RAG: Retrieval-Augmented Generation based Time Series Foundation Models are Stronger Zero-Shot Forecaster

Kanghui Ning, Zijie Pan, Yu Liu et al.

NEURIPS 2025arXiv:2503.07649
15
citations

Uncertainty-Informed Meta Pseudo Labeling for Surrogate Modeling with Limited Labeled Data

Xingyu Ren, Pengwei Liu, Pengkai Wang et al.

NEURIPS 2025

Universal generalization guarantees for Wasserstein distributionally robust models

Tam Le, Jerome Malick

ICLR 2025arXiv:2402.11981
7
citations

An Empirical Study Into What Matters for Calibrating Vision-Language Models

Weijie Tu, Weijian Deng, Dylan Campbell et al.

ICML 2024arXiv:2402.07417
15
citations

CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts

Yichao Cai, Yuhang Liu, Zhen Zhang et al.

ECCV 2024arXiv:2311.16445
11
citations

COALA: A Practical and Vision-Centric Federated Learning Platform

Weiming Zhuang, Jian Xu, Chen Chen et al.

ICML 2024arXiv:2407.16560
10
citations

De-confounded Data-free Knowledge Distillation for Handling Distribution Shifts

Yuzheng Wang, Dingkang Yang, Zhaoyu Chen et al.

CVPR 2024arXiv:2403.19539
17
citations

Density-Softmax: Efficient Test-time Model for Uncertainty Estimation and Robustness under Distribution Shifts

Ha Manh Bui, Anqi Liu

ICML 2024arXiv:2302.06495
9
citations

Disentangled Graph Self-supervised Learning for Out-of-Distribution Generalization

Haoyang Li, Xin Wang, Zeyang Zhang et al.

ICML 2024

DQ-LoRe: Dual Queries with Low Rank Approximation Re-ranking for In-Context Learning

Jing Xiong, Zixuan Li, Chuanyang Zheng et al.

ICLR 2024arXiv:2310.02954

Efficient Diffusion-Driven Corruption Editor for Test-Time Adaptation

Yeongtak Oh, Jonghyun Lee, Jooyoung Choi et al.

ECCV 2024arXiv:2403.10911
6
citations

Efficient Test-Time Adaptation of Vision-Language Models

Adilbek Karmanov, Dayan Guan, Shijian Lu et al.

CVPR 2024arXiv:2403.18293
116
citations

Feature Contamination: Neural Networks Learn Uncorrelated Features and Fail to Generalize

Tianren Zhang, Chujie Zhao, Guanyu Chen et al.

ICML 2024arXiv:2406.03345
9
citations

FedRC: Tackling Diverse Distribution Shifts Challenge in Federated Learning by Robust Clustering

Yongxin Guo, Xiaoying Tang, Tao Lin

ICML 2024arXiv:2301.12379
25
citations

Few-shot Adaptation to Distribution Shifts By Mixing Source and Target Embeddings

Yihao Xue, Ali Payani, Yu Yang et al.

ICML 2024arXiv:2305.14521
4
citations

Graph Structure Extrapolation for Out-of-Distribution Generalization

Xiner Li, Shurui Gui, Youzhi Luo et al.

ICML 2024

How Do Nonlinear Transformers Learn and Generalize in In-Context Learning?

Hongkang Li, Meng Wang, Songtao Lu et al.

ICML 2024arXiv:2402.15607
34
citations

Improving Out-of-Distribution Generalization in Graphs via Hierarchical Semantic Environments

Yinhua Piao, Sangseon Lee, Yijingxiu Lu et al.

CVPR 2024arXiv:2403.01773
8
citations

IW-GAE: Importance weighted group accuracy estimation for improved calibration and model selection in unsupervised domain adaptation

Taejong Joo, Diego Klabjan

ICML 2024arXiv:2310.10611
1
citations

Learning to Intervene on Concept Bottlenecks

David Steinmann, Wolfgang Stammer, Felix Friedrich et al.

ICML 2024arXiv:2308.13453
28
citations

Measuring Stochastic Data Complexity with Boltzmann Influence Functions

Nathan Ng, Roger Grosse, Marzyeh Ghassemi

ICML 2024arXiv:2406.02745
1
citations

MedBN: Robust Test-Time Adaptation against Malicious Test Samples

Hyejin Park, Jeongyeon Hwang, Sunung Mun et al.

CVPR 2024arXiv:2403.19326
8
citations

Multiply Robust Estimation for Local Distribution Shifts with Multiple Domains

Steven Wilkins-Reeves, Xu Chen, Qi Ma et al.

ICML 2024arXiv:2402.14145
2
citations

Online Adaptive Anomaly Thresholding with Confidence Sequences

Sophia Sun, Abishek Sankararaman, Balakrishnan Narayanaswamy

ICML 2024

Selective Mixup Helps with Distribution Shifts, But Not (Only) because of Mixup

Damien Teney, Jindong Wang, Ehsan Abbasnejad

ICML 2024arXiv:2305.16817
9
citations

Statistical Inference Under Constrained Selection Bias

Santiago Cortes-Gomez, Mateo Dulce Rubio, Carlos Miguel Patiño et al.

ICML 2024arXiv:2306.03302

Statistical Properties of Robust Satisficing

zhiyi li, Yunbei Xu, Ruohan Zhan

ICML 2024arXiv:2405.20451

TTT-MIM: Test-Time Training with Masked Image Modeling for Denoising Distribution Shifts

Youssef Mansour, Xuyang Zhong, Serdar Caglar et al.

ECCV 2024
8
citations