"distributional reinforcement learning" Papers

12 papers found

$Q\sharp$: Provably Optimal Distributional RL for LLM Post-Training

Jin Zhou, Kaiwen Wang, Jonathan Chang et al.

NEURIPS 2025arXiv:2502.20548
12
citations

ADDQ: Adaptive distributional double Q-learning

Leif Döring, Benedikt Wille, Maximilian Birr et al.

ICML 2025arXiv:2506.19478
1
citations

Bridging Distributional and Risk-sensitive Reinforcement Learning with Provable Regret Bounds

Hao Liang, Zhiquan Luo

NEURIPS 2025arXiv:2210.14051
18
citations

Conformal Prediction Beyond the Horizon: Distribution-Free Inference for Policy Evaluation

Feichen Gan, Lu Youcun, Yingying Zhang et al.

NEURIPS 2025oralarXiv:2510.26026

Estimation and Inference in Distributional Reinforcement Learning

Liangyu Zhang, Yang Peng, Jiadong Liang et al.

NEURIPS 2025arXiv:2309.17262
4
citations

Intrinsic Benefits of Categorical Distributional Loss: Uncertainty-aware Regularized Exploration in Reinforcement Learning

Ke Sun, Yingnan Zhao, Enze Shi et al.

NEURIPS 2025arXiv:2110.03155
2
citations

A Distributional Analogue to the Successor Representation

Harley Wiltzer, Jesse Farebrother, Arthur Gretton et al.

ICML 2024spotlightarXiv:2402.08530
10
citations

Distributional Bellman Operators over Mean Embeddings

Li Kevin Wenliang, Gregoire Deletang, Matthew Aitchison et al.

ICML 2024oralarXiv:2312.07358
4
citations

Exploration and Anti-Exploration with Distributional Random Network Distillation

Kai Yang, jian tao, Jiafei Lyu et al.

ICML 2024arXiv:2401.09750
34
citations

More Benefits of Being Distributional: Second-Order Bounds for Reinforcement Learning

Kaiwen Wang, Owen Oertell, Alekh Agarwal et al.

ICML 2024arXiv:2402.07198
17
citations

Neural-Kernel Conditional Mean Embeddings

Eiki Shimizu, Kenji Fukumizu, Dino Sejdinovic

ICML 2024arXiv:2403.10859
4
citations

Provable Risk-Sensitive Distributional Reinforcement Learning with General Function Approximation

Yu Chen, XiangCheng Zhang, Siwei Wang et al.

ICML 2024arXiv:2402.18159
3
citations