"gradient descent optimization" Papers

11 papers found

Curl Descent : Non-Gradient Learning Dynamics with Sign-Diverse Plasticity

Hugo Ninou, Jonathan Kadmon, N Alex Cayco Gajic

NEURIPS 2025spotlightarXiv:2510.02765

Gradient descent with generalized Newton’s method

Zhiqi Bu, Shiyun Xu

ICLR 2025arXiv:2407.02772
8
citations

Scaling Laws for Gradient Descent and Sign Descent for Linear Bigram Models under Zipf’s Law

Frederik Kunstner, Francis Bach

NEURIPS 2025arXiv:2505.19227
12
citations

Variational Inference with Mixtures of Isotropic Gaussians

Marguerite Petit-Talamon, Marc Lambert, Anna Korba

NEURIPS 2025arXiv:2506.13613

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Xuran Meng, Difan Zou, Yuan Cao

ICML 2024arXiv:2310.01975
10
citations

How Graph Neural Networks Learn: Lessons from Training Dynamics

Chenxiao Yang, Qitian Wu, David Wipf et al.

ICML 2024arXiv:2310.05105
2
citations

Improving Sharpness-Aware Minimization by Lookahead

Runsheng Yu, Youzhi Zhang, James Kwok

ICML 2024

LoRA Training in the NTK Regime has No Spurious Local Minima

Uijeong Jang, Jason Lee, Ernest Ryu

ICML 2024arXiv:2402.11867
35
citations

Offline and Online Optical Flow Enhancement for Deep Video Compression

Chuanbo Tang, Xihua Sheng, Zhuoyuan Li et al.

AAAI 2024paperarXiv:2307.05092
28
citations

QLABGrad: A Hyperparameter-Free and Convergence-Guaranteed Scheme for Deep Learning

Fang-Xiang Wu, Minghan Fu

AAAI 2024paperarXiv:2302.00252
12
citations

Theoretical Guarantees for Variational Inference with Fixed-Variance Mixture of Gaussians

Tom Huix, Anna Korba, Alain Oliviero Durmus et al.

ICML 2024arXiv:2406.04012
10
citations