"hyperparameter optimization" Papers

19 papers found

Accelerating neural network training: An analysis of the AlgoPerf competition

Priya Kasimbeg, Frank Schneider, Runa Eschenhagen et al.

ICLR 2025arXiv:2502.15015
19
citations

Adaptive Kernel Design for Bayesian Optimization Is a Piece of CAKE with LLMs

Richard Suwandi, Feng Yin, Juntao Wang et al.

NEURIPS 2025arXiv:2509.17998
2
citations

A Multi-Power Law for Loss Curve Prediction Across Learning Rate Schedules

Kairong Luo, Haodong Wen, Shengding Hu et al.

ICLR 2025arXiv:2503.12811
17
citations

A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning

Minyoung Kim, Timothy Hospedales

AAAI 2025paperarXiv:2410.10417
2
citations

Differentially Private Bilevel Optimization: Efficient Algorithms with Near-Optimal Rates

Andrew Lowy, Daogao Liu

NEURIPS 2025arXiv:2506.12994
1
citations

FreSh: Frequency Shifting for Accelerated Neural Representation Learning

Adam Kania, Marko Mihajlovic, Sergey Prokudin et al.

ICLR 2025arXiv:2410.05050
7
citations

Learn2Synth: Learning Optimal Data Synthesis Using Hypergradients for Brain Image Segmentation

Xiaoling Hu, Xiangrui Zeng, Oula Puonti et al.

ICCV 2025arXiv:2411.16719
2
citations

(Mis)Fitting Scaling Laws: A Survey of Scaling Law Fitting Techniques in Deep Learning

Margaret Li, Sneha Kudugunta, Luke Zettlemoyer

ICLR 2025
9
citations

qNBO: quasi-Newton Meets Bilevel Optimization

Sheng Fang, Yongjin Liu, Wei Yao et al.

ICLR 2025arXiv:2502.01076
1
citations

Sequential Multi-Agent Dynamic Algorithm Configuration

Chen Lu, Ke Xue, Lei Yuan et al.

NEURIPS 2025arXiv:2510.23535
1
citations

The Effectiveness of Curvature-Based Rewiring and the Role of Hyperparameters in GNNs Revisited

Floriano Tori, Vincent Holst, Vincent Ginis

ICLR 2025arXiv:2407.09381
8
citations

ULTHO: Ultra-Lightweight yet Efficient Hyperparameter Optimization in Deep Reinforcement Learning

Mingqi Yuan, Bo Li, Xin Jin et al.

ICCV 2025arXiv:2503.06101
1
citations

Unveiling the Secret Recipe: A Guide For Supervised Fine-Tuning Small LLMs

Aldo Pareja, Nikhil Shivakumar Nayak, Hao Wang et al.

ICLR 2025arXiv:2412.13337
34
citations

A New Linear Scaling Rule for Private Adaptive Hyperparameter Optimization

Ashwinee Panda, Xinyu Tang, Saeed Mahloujifar et al.

ICML 2024arXiv:2212.04486
15
citations

In-Context Freeze-Thaw Bayesian Optimization for Hyperparameter Optimization

Herilalaina Rakotoarison, Steven Adriaensen, Neeratyoy Mallik et al.

ICML 2024arXiv:2404.16795
27
citations

Interactive Hyperparameter Optimization in Multi-Objective Problems via Preference Learning

Joseph Giovanelli, Alexander Tornede, Tanja Tornede et al.

AAAI 2024paperarXiv:2309.03581
8
citations

Nonsmooth Implicit Differentiation: Deterministic and Stochastic Convergence Rates

Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo

ICML 2024arXiv:2403.11687
3
citations

Prior Specification for Bayesian Matrix Factorization via Prior Predictive Matching

Eliezer de Souza da Silva, Tomasz Kuśmierczyk, Marcelo Hartmann et al.

ICML 2024arXiv:1910.12263
4
citations

Provably Convergent Federated Trilevel Learning

Yang Jiao, Kai YANG, Tiancheng Wu et al.

AAAI 2024paperarXiv:2312.11835
6
citations