Poster "interpretable machine learning" Papers

14 papers found

Bayesian Concept Bottleneck Models with LLM Priors

Jean Feng, Avni Kothari, Lucas Zier et al.

NEURIPS 2025arXiv:2410.15555
10
citations

Causally Reliable Concept Bottleneck Models

Giovanni De Felice, Arianna Casanova Flores, Francesco De Santis et al.

NEURIPS 2025arXiv:2503.04363
8
citations

CHiQPM: Calibrated Hierarchical Interpretable Image Classification

Thomas Norrenbrock, Timo Kaiser, Sovan Biswas et al.

NEURIPS 2025arXiv:2511.20779

Differentiable Rule Induction from Raw Sequence Inputs

Kun Gao, Katsumi Inoue, Yongzhi Cao et al.

ICLR 2025
2
citations

Empowering Decision Trees via Shape Function Branching

Nakul Upadhya, Eldan Cohen

NEURIPS 2025arXiv:2510.19040

From GNNs to Trees: Multi-Granular Interpretability for Graph Neural Networks

Jie Yang, Yuwen Wang, Kaixuan Chen et al.

ICLR 2025arXiv:2505.00364
4
citations

MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation

Zhaoning Yu, Hongyang Gao

ICLR 2025arXiv:2405.12519
9
citations

MIX: A Multi-view Time-Frequency Interactive Explanation Framework for Time Series Classification

Viet-Hung Tran, Ngoc Phu Doan, Zichi Zhang et al.

NEURIPS 2025

Compositional Few-Shot Class-Incremental Learning

Yixiong Zou, Shanghang Zhang, haichen zhou et al.

ICML 2024arXiv:2405.17022
21
citations

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

Harrie Oosterhuis, Lijun Lyu, Avishek Anand

ICML 2024arXiv:2407.11778
3
citations

Post-hoc Part-Prototype Networks

Andong Tan, Fengtao ZHOU, Hao Chen

ICML 2024arXiv:2406.03421
7
citations

Prospector Heads: Generalized Feature Attribution for Large Models & Data

Gautam Machiraju, Alexander Derry, Arjun Desai et al.

ICML 2024arXiv:2402.11729
2
citations

Removing Spurious Concepts from Neural Network Representations via Joint Subspace Estimation

Floris Holstege, Bram Wouters, Noud van Giersbergen et al.

ICML 2024arXiv:2310.11991
3
citations

This Probably Looks Exactly Like That: An Invertible Prototypical Network

Zachariah Carmichael, Timothy Redgrave, Daniel Gonzalez Cedre et al.

ECCV 2024arXiv:2407.12200
6
citations