Poster "inverse problems" Papers

35 papers found

Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data

Asad Aali, Giannis Daras, Brett Levac et al.

ICLR 2025arXiv:2403.08728
32
citations

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

Da Long, Zhitong Xu, Guang Yang et al.

ICML 2025arXiv:2410.13794
2
citations

Boundary constrained Gaussian processes for robust physics-informed machine learning of linear partial differential equations

David Dalton, Alan Lazarus, Hao Gao et al.

ICLR 2025

Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling

Michal Balcerak, Tamaz Amiranashvili, Antonio Terpin et al.

NEURIPS 2025arXiv:2504.10612
12
citations

LATINO-PRO: LAtent consisTency INverse sOlver with PRompt Optimization

Alessio Spagnoletti, Jean Prost, Andres Almansa et al.

ICCV 2025arXiv:2503.12615
11
citations

Manifold Learning by Mixture Models of VAEs for Inverse Problems

Giovanni S. Alberti, Johannes Hertrich, Matteo Santacesaria et al.

ICLR 2025arXiv:2303.15244
12
citations

MAP Estimation with Denoisers: Convergence Rates and Guarantees

Scott Pesme, Giacomo Meanti, Michael Arbel et al.

NEURIPS 2025arXiv:2507.15397
2
citations

PIED: Physics-Informed Experimental Design for Inverse Problems

Apivich Hemachandra, Gregory Kang Ruey Lau, See-Kiong Ng et al.

ICLR 2025arXiv:2503.07070
1
citations

PRDP: Progressively Refined Differentiable Physics

Kanishk Bhatia, Felix Koehler, Nils Thuerey

ICLR 2025arXiv:2502.19611
1
citations

Repulsive Latent Score Distillation for Solving Inverse Problems

Nicolas Zilberstein, Morteza Mardani, Santiago Segarra

ICLR 2025arXiv:2406.16683
13
citations

Rethinking Diffusion Posterior Sampling: From Conditional Score Estimator to Maximizing a Posterior

Tongda Xu, Xiyan Cai, Xinjie Zhang et al.

ICLR 2025arXiv:2501.18913
12
citations

Rethinking Gradient Step Denoiser: Towards Truly Pseudo-Contractive Operator

Shuchang Zhang, Yaoyun Zeng, Kangkang Deng et al.

NEURIPS 2025

Self-diffusion for Solving Inverse Problems

Guanxiong Luo, Shoujin Huang

NEURIPS 2025arXiv:2510.21417
1
citations

Semialgebraic Neural Networks: From roots to representations

S David Mis, Matti Lassas, Maarten V de Hoop

ICLR 2025arXiv:2501.01564

Sensitivity-Constrained Fourier Neural Operators for Forward and Inverse Problems in Parametric Differential Equations

Abdolmehdi Behroozi, Chaopeng Shen, Daniel Kifer

ICLR 2025arXiv:2505.08740
5
citations

Solving and Learning Partial Differential Equations with Variational Q-Exponential Processes

Guangting Yu, Shiwei Lan

NEURIPS 2025

Solving Inverse Problems with FLAIR

Julius Erbach, Dominik Narnhofer, Andreas Dombos et al.

NEURIPS 2025arXiv:2506.02680
8
citations

Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures

Peimeng Guan, Naveed Iqbal, Mark Davenport et al.

ICLR 2025arXiv:2403.04847
5
citations

Split Gibbs Discrete Diffusion Posterior Sampling

Wenda Chu, Zihui Wu, Yifan Chen et al.

NEURIPS 2025arXiv:2503.01161
8
citations

System-Embedded Diffusion Bridge Models

Bartlomiej Sobieski, Matthew Tivnan, Yuang Wang et al.

NEURIPS 2025arXiv:2506.23726
2
citations

Time-Embedded Algorithm Unrolling for Computational MRI

Junno Yun, Yasar Utku Alcalar, Mehmet Akcakaya

NEURIPS 2025arXiv:2510.16321
1
citations

Deep Diffusion Image Prior for Efficient OOD Adaptation in 3D Inverse Problems

Hyungjin Chung, Jong Chul Ye

ECCV 2024arXiv:2407.10641
17
citations

D-Flow: Differentiating through Flows for Controlled Generation

Heli Ben-Hamu, Omri Puny, Itai Gat et al.

ICML 2024arXiv:2402.14017
75
citations

Diffusion Posterior Sampling is Computationally Intractable

Shivam Gupta, Ajil Jalal, Aditya Parulekar et al.

ICML 2024arXiv:2402.12727
17
citations

Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems

Sojin Lee, Dogyun Park, Inho Kong et al.

ECCV 2024arXiv:2407.16125
9
citations

Global Optimality for Non-linear Constrained Restoration Problems via Invexity

Samuel Pinilla, Jeyan Thiyagalingam

ICLR 2024

Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance

Xinyu Peng, Ziyang Zheng, Wenrui Dai et al.

ICML 2024arXiv:2402.02149
41
citations

Learning Pseudo-Contractive Denoisers for Inverse Problems

Deliang Wei, Peng Chen, Fang Li

ICML 2024arXiv:2402.05637
7
citations

Plug-and-Play image restoration with Stochastic deNOising REgularization

Marien Renaud, Jean Prost, Arthur Leclaire et al.

ICML 2024arXiv:2402.01779
17
citations

Plug-and-Play Learned Proximal Trajectory for 3D Sparse-View X-Ray Computed Tomography

Romain Vo, Julie Escoda, Caroline Vienne et al.

ECCV 2024
3
citations

Prompt-tuning Latent Diffusion Models for Inverse Problems

Hyungjin Chung, Jong Chul YE, Peyman Milanfar et al.

ICML 2024arXiv:2310.01110
64
citations

Task-Driven Uncertainty Quantification in Inverse Problems via Conformal Prediction

Jeffrey Wen, Rizwan Ahmad, Phillip Schniter

ECCV 2024arXiv:2405.18527
5
citations

The Emergence of Reproducibility and Consistency in Diffusion Models

Huijie Zhang, Jinfan Zhou, Yifu Lu et al.

ICML 2024

Weakly Convex Regularisers for Inverse Problems: Convergence of Critical Points and Primal-Dual Optimisation

Zakhar Shumaylov, Jeremy Budd, Subhadip Mukherjee et al.

ICML 2024arXiv:2402.01052
18
citations

Zero-Shot Adaptation for Approximate Posterior Sampling of Diffusion Models in Inverse Problems

Yasar Utku Alcalar, Mehmet Akcakaya

ECCV 2024arXiv:2407.11288
8
citations