"kernel ridge regression" Papers

11 papers found

A duality framework for analyzing random feature and two-layer neural networks

Hongrui Chen, Jihao Long, Lei Wu

NEURIPS 2025arXiv:2305.05642
2
citations

A Geometrical Analysis of Kernel Ridge Regression and its Applications

Georgios Gavrilopoulos, Guillaume Lecué, Zong Shang

NEURIPS 2025arXiv:2404.07709
2
citations

Kernel Regression in Structured Non-IID Settings: Theory and Implications for Denoising Score Learning

Dechen Zhang, Zhenmei Shi, Zhang et al.

NEURIPS 2025arXiv:2510.15363

Pseudo-Labeling for Kernel Ridge Regression under Covariate Shift

Kaizheng Wang

NEURIPS 2025arXiv:2302.10160
15
citations

Ridge Boosting is Both Robust and Efficient

David Bruns-Smith, Zhongming Xie, Avi Feller

NEURIPS 2025spotlightarXiv:2510.22083

BWS: Best Window Selection Based on Sample Scores for Data Pruning across Broad Ranges

Hoyong Choi, Nohyun Ki, Hye Won Chung

ICML 2024arXiv:2406.03057
9
citations

Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum

Tin Sum Cheng, Aurelien Lucchi, Anastasis Kratsios et al.

ICML 2024arXiv:2402.01297
12
citations

High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization

Yihang Chen, Fanghui Liu, Taiji Suzuki et al.

ICML 2024arXiv:2406.03171
3
citations

Quasi-Monte Carlo Features for Kernel Approximation

ZHEN HUANG, Jiajin Sun, Yian Huang

ICML 2024spotlightarXiv:2503.06041

Smoothness Adaptive Hypothesis Transfer Learning

Haotian Lin, Matthew Reimherr

ICML 2024arXiv:2402.14966
11
citations

Towards Theoretical Understanding of Learning Large-scale Dependent Data via Random Features

Chao Wang, Xin Bing, Xin HE et al.

ICML 2024spotlight