"linear function approximation" Papers

10 papers found

Computational Hardness of Reinforcement Learning with Partial $q^{\pi}$-Realizability

Shayan Karimi, Xiaoqi Tan

NEURIPS 2025

Computationally Efficient RL under Linear Bellman Completeness for Deterministic Dynamics

Runzhe Wu, Ayush Sekhari, Akshay Krishnamurthy et al.

ICLR 2025arXiv:2406.11810
3
citations

Deployment Efficient Reward-Free Exploration with Linear Function Approximation

Zihan Zhang, Yuxin Chen, Jason Lee et al.

NEURIPS 2025

Offline Actor-Critic for Average Reward MDPs

William Powell, Jeongyeol Kwon, Qiaomin Xie et al.

NEURIPS 2025
73
citations

Plastic Learning with Deep Fourier Features

Alex Lewandowski, Dale Schuurmans, Marlos C. Machado

ICLR 2025arXiv:2410.20634
12
citations

Provably Efficient RL under Episode-Wise Safety in Constrained MDPs with Linear Function Approximation

Toshinori Kitamura, Arnob Ghosh, Tadashi Kozuno et al.

NEURIPS 2025spotlightarXiv:2502.10138

The ODE Method for Stochastic Approximation and Reinforcement Learning with Markovian Noise

Shuze Daniel Liu, Shuhang Chen, Shangtong Zhang

NEURIPS 2025oralarXiv:2401.07844
13
citations

Averaging $n$-step Returns Reduces Variance in Reinforcement Learning

Brett Daley, Martha White, Marlos C. Machado

ICML 2024oralarXiv:2402.03903
5
citations

Exploration-Driven Policy Optimization in RLHF: Theoretical Insights on Efficient Data Utilization

Yihan Du, Anna Winnicki, Gal Dalal et al.

ICML 2024arXiv:2402.10342
17
citations

Provably Efficient Exploration in Quantum Reinforcement Learning with Logarithmic Worst-Case Regret

Han Zhong, Jiachen Hu, Yecheng Xue et al.

ICML 2024arXiv:2302.10796
11
citations