"message passing" Papers

16 papers found

Accurate and Scalable Graph Neural Networks via Message Invariance

Zhihao Shi, Jie Wang, Zhiwei Zhuang et al.

ICLR 2025arXiv:2502.19693
3
citations

Bundle Neural Network for message diffusion on graphs

Jacob Bamberger, Federico Barbero, Xiaowen Dong et al.

ICLR 2025arXiv:2405.15540
8
citations

DuetGraph: Coarse-to-Fine Knowledge Graph Reasoning with Dual-Pathway Global-Local Fusion

Jin Li, Zezhong Ding, Xike Xie

NEURIPS 2025arXiv:2507.11229
1
citations

Learning Long Range Dependencies on Graphs via Random Walks

Dexiong Chen, Till Schulz, Karsten Borgwardt

ICLR 2025arXiv:2406.03386
20
citations

Making Classic GNNs Strong Baselines Across Varying Homophily: A Smoothness–Generalization Perspective

Ming Gu, Zhuonan Zheng, Sheng Zhou et al.

NEURIPS 2025arXiv:2412.09805
3
citations

Normalize Then Propagate: Efficient Homophilous Regularization for Few-Shot Semi-Supervised Node Classification

Baoming Zhang, MingCai Chen, Jianqing Song et al.

AAAI 2025paperarXiv:2501.08581
1
citations

Revisiting Random Walks for Learning on Graphs

Jinwoo Kim, Olga Zaghen, Ayhan Suleymanzade et al.

ICLR 2025arXiv:2407.01214
8
citations

The Effectiveness of Curvature-Based Rewiring and the Role of Hyperparameters in GNNs Revisited

Floriano Tori, Vincent Holst, Vincent Ginis

ICLR 2025arXiv:2407.09381
8
citations

Zero-resource Hallucination Detection for Text Generation via Graph-based Contextual Knowledge Triples Modeling

Xinyue Fang, Zhen Huang, Zhiliang Tian et al.

AAAI 2025paperarXiv:2409.11283
6
citations

Efficient Contrastive Learning for Fast and Accurate Inference on Graphs

Teng Xiao, Huaisheng Zhu, Zhiwei Zhang et al.

ICML 2024

Heterogeneous Graph Learning for Scene Graph Prediction in 3D Point Clouds

Yanni Ma, Hao Liu, Yun Pei et al.

ECCV 2024
3
citations

Long Range Propagation on Continuous-Time Dynamic Graphs

Alessio Gravina, Giulio Lovisotto, Claudio Gallicchio et al.

ICML 2024oralarXiv:2406.02740
28
citations

Multi-Track Message Passing: Tackling Oversmoothing and Oversquashing in Graph Learning via Preventing Heterophily Mixing

Hongbin Pei, Yu Li, Huiqi Deng et al.

ICML 2024spotlight

Provably Powerful Graph Neural Networks for Directed Multigraphs

Beni Egressy, Luc von Niederhäusern, Jovan Blanuša et al.

AAAI 2024paperarXiv:2306.11586
33
citations

Recurrent Distance Filtering for Graph Representation Learning

Yuhui Ding, Antonio Orvieto, Bobby He et al.

ICML 2024arXiv:2312.01538
13
citations

Towards Inductive Robustness: Distilling and Fostering Wave-Induced Resonance in Transductive GCNs against Graph Adversarial Attacks

Ao Liu, Wenshan Li, Tao Li et al.

AAAI 2024paperarXiv:2312.08651
7
citations