Poster "meta-learning" Papers

33 papers found

A Meta-Learning Approach to Bayesian Causal Discovery

Anish Dhir, Matthew Ashman, James Requeima et al.

ICLR 2025arXiv:2412.16577
12
citations

DataRater: Meta-Learned Dataset Curation

Dan Andrei Calian, Greg Farquhar, Iurii Kemaev et al.

NEURIPS 2025arXiv:2505.17895
7
citations

Differentially Private Bilevel Optimization: Efficient Algorithms with Near-Optimal Rates

Andrew Lowy, Daogao Liu

NEURIPS 2025arXiv:2506.12994
1
citations

Dimension Agnostic Neural Processes

Hyungi Lee, Chaeyun Jang, Dong Bok Lee et al.

ICLR 2025arXiv:2502.20661
3
citations

Drug-TTA: Test-Time Adaptation for Drug Virtual Screening via Multi-task Meta-Auxiliary Learning

Ao Shen, Ming'zhi Yuan, Yingfan MA et al.

ICML 2025

End-to-End Implicit Neural Representations for Classification

Alexander Gielisse, Jan van Gemert

CVPR 2025arXiv:2503.18123
4
citations

Fast Rate Bounds for Multi-Task and Meta-Learning with Different Sample Sizes

Hossein Zakerinia, Christoph Lampert

NEURIPS 2025arXiv:2505.15496
1
citations

Few-Shot Image Quality Assessment via Adaptation of Vision-Language Models

Xudong Li, Zihao Huang, Yan Zhang et al.

ICCV 2025arXiv:2409.05381
4
citations

LiFT: Learning to Fine-Tune via Bayesian Parameter Efficient Meta Fine-Tuning

Minyoung Kim, Timothy Hospedales

ICLR 2025
1
citations

MetaBox-v2: A Unified Benchmark Platform for Meta-Black-Box Optimization

Zeyuan Ma, Yue-Jiao Gong, Hongshu Guo et al.

NEURIPS 2025arXiv:2505.17745
5
citations

Meta-Dynamical State Space Models for Integrative Neural Data Analysis

Ayesha Vermani, Josue Nassar, Hyungju Jeon et al.

ICLR 2025arXiv:2410.05454
4
citations

MetaOOD: Automatic Selection of OOD Detection Models

Yuehan Qin, Yichi Zhang, Yi Nian et al.

ICLR 2025arXiv:2410.03074
16
citations

MetaWriter: Personalized Handwritten Text Recognition Using Meta-Learned Prompt Tuning

Wenhao Gu, Li Gu, Ching Suen et al.

CVPR 2025arXiv:2505.20513
1
citations

PersonalLLM: Tailoring LLMs to Individual Preferences

Thomas Zollo, Andrew Siah, Naimeng Ye et al.

ICLR 2025arXiv:2409.20296
28
citations

PIED: Physics-Informed Experimental Design for Inverse Problems

Apivich Hemachandra, Gregory Kang Ruey Lau, See-Kiong Ng et al.

ICLR 2025arXiv:2503.07070
1
citations

Provable Meta-Learning with Low-Rank Adaptations

Jacob Block, Sundararajan Srinivasan, Liam Collins et al.

NEURIPS 2025arXiv:2410.22264

Provably Efficient Multi-Task Meta Bandit Learning via Shared Representations

Jiabin Lin, Shana Moothedath

NEURIPS 2025

qNBO: quasi-Newton Meets Bilevel Optimization

Sheng Fang, Yongjin Liu, Wei Yao et al.

ICLR 2025arXiv:2502.01076
1
citations

Test Time Scaling for Neural Processes

Hyungi Lee, Moonseok Choi, Hyunsu Kim et al.

NEURIPS 2025

Why In-Context Learning Models are Good Few-Shot Learners?

Shiguang Wu, Yaqing Wang, Quanming Yao

ICLR 2025

A Nearly Optimal Single Loop Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness

Xiaochuan Gong, Jie Hao, Mingrui Liu

ICML 2024arXiv:2412.20017
8
citations

Exploring Active Learning in Meta-Learning: Enhancing Context Set Labeling

Wonho Bae, Jing Wang, Danica J. Sutherland

ECCV 2024arXiv:2311.02879
1
citations

Few-Shot Character Understanding in Movies as an Assessment to Meta-Learning of Theory-of-Mind

Mo Yu, Qiujing Wang, Shunchi Zhang et al.

ICML 2024arXiv:2211.04684
21
citations

Human-like Category Learning by Injecting Ecological Priors from Large Language Models into Neural Networks

Akshay Kumar Jagadish, Julian Coda-Forno, Mirko Thalmann et al.

ICML 2024arXiv:2402.01821
6
citations

Improving Generalization in Offline Reinforcement Learning via Adversarial Data Splitting

Da Wang, Lin Li, Wei Wei et al.

ICML 2024

Learning Low-dimensional Latent Dynamics from High-dimensional Observations: Non-asymptotics and Lower Bounds

Yuyang Zhang, Shahriar Talebi, Na Li

ICML 2024arXiv:2405.06089
5
citations

Learning Modality Knowledge Alignment for Cross-Modality Transfer

Wenxuan Ma, Shuang Li, Lincan Cai et al.

ICML 2024arXiv:2406.18864
8
citations

Learning to Continually Learn with the Bayesian Principle

Soochan Lee, Hyeonseong Jeon, Jaehyeon Son et al.

ICML 2024arXiv:2405.18758
8
citations

Learning to Obstruct Few-Shot Image Classification over Restricted Classes

Amber Yijia Zheng, Chiao-An Yang, Raymond Yeh

ECCV 2024arXiv:2409.19210
4
citations

Learning Universal Predictors

Jordi Grau-Moya, Tim Genewein, Marcus Hutter et al.

ICML 2024arXiv:2401.14953
26
citations

Memory Efficient Neural Processes via Constant Memory Attention Block

Leo Feng, Frederick Tung, Hossein Hajimirsadeghi et al.

ICML 2024arXiv:2305.14567
8
citations

Meta Evidential Transformer for Few-Shot Open-Set Recognition

Hitesh Sapkota, Krishna Neupane, Qi Yu

ICML 2024

Nonsmooth Implicit Differentiation: Deterministic and Stochastic Convergence Rates

Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo

ICML 2024arXiv:2403.11687
3
citations