"model merging" Papers

41 papers found

Accurate and Efficient Low-Rank Model Merging in Core Space

Aniello Panariello, Daniel Marczak, Simone Magistri et al.

NEURIPS 2025arXiv:2509.17786
3
citations

Activation-Guided Consensus Merging for Large Language Models

Yuxuan Yao, Shuqi LIU, Zehua Liu et al.

NEURIPS 2025arXiv:2505.14009
2
citations

AdaMMS: Model Merging for Heterogeneous Multimodal Large Language Models with Unsupervised Coefficient Optimization

Yiyang Du, Xiaochen Wang, Chi Chen et al.

CVPR 2025arXiv:2503.23733
6
citations

Agent Skill Acquisition for Large Language Models via CycleQD

So Kuroki, Taishi Nakamura, Takuya Akiba et al.

ICLR 2025oralarXiv:2410.14735
3
citations

CodeMerge: Codebook-Guided Model Merging for Robust Test-Time Adaptation in Autonomous Driving

Huitong Yang, Zhuoxiao Chen, Fengyi Zhang et al.

NEURIPS 2025arXiv:2505.16524

Continual Model Merging without Data: Dual Projections for Balancing Stability and Plasticity

Enneng Yang, Anke Tang, Li Shen et al.

NEURIPS 2025

Curriculum Model Merging: Harmonizing Chemical LLMs for Enhanced Cross-Task Generalization

Baoyi He, Luotian Yuan, Ying Wei et al.

NEURIPS 2025

DuET: Dual Incremental Object Detection via Exemplar-Free Task Arithmetic

Munish Monga, Vishal Chudasama, Pankaj Wasnik et al.

ICCV 2025arXiv:2506.21260

Extrapolating and Decoupling Image-to-Video Generation Models: Motion Modeling is Easier Than You Think

Zhenyi Lu, Xiaoye Qu, Zhenyi Lu et al.

CVPR 2025highlightarXiv:2503.00948
10
citations

FREE-Merging: Fourier Transform for Efficient Model Merging

Shenghe Zheng, Hongzhi Wang

ICCV 2025arXiv:2411.16815
3
citations

HM3: Hierarchical Multi-Objective Model Merging for Pretrained Models

Yu Zhou, Xingyu Wu, Jibin Wu et al.

NEURIPS 2025spotlightarXiv:2409.18893
7
citations

Layer Swapping for Zero-Shot Cross-Lingual Transfer in Large Language Models

Lucas Bandarkar, Benjamin Muller, Pritish Yuvraj et al.

ICLR 2025arXiv:2410.01335
15
citations

Leveraging Submodule Linearity Enhances Task Arithmetic Performance in LLMs

Rui Dai, Sile Hu, Xu Shen et al.

ICLR 2025arXiv:2504.10902
9
citations

Linear Mode Connectivity between Multiple Models modulo Permutation Symmetries

Akira Ito, Masanori Yamada, Atsutoshi Kumagai

ICML 2025

Linear Mode Connectivity in Differentiable Tree Ensembles

Ryuichi Kanoh, Mahito Sugiyama

ICLR 2025arXiv:2405.14596
1
citations

LiNeS: Post-training Layer Scaling Prevents Forgetting and Enhances Model Merging

Ke Wang, Nikos Dimitriadis, Alessandro Favero et al.

ICLR 2025arXiv:2410.17146
27
citations

Local Mixtures of Experts: Essentially Free Test-Time Training via Model Merging

Ryo Bertolissi, Jonas Hübotter, Ido Hakimi et al.

COLM 2025paperarXiv:2505.14136
6
citations

LoRACLR: Contrastive Adaptation for Customization of Diffusion Models

Enis Simsar, Thomas Hofmann, Federico Tombari et al.

CVPR 2025arXiv:2412.09622
12
citations

MergeBench: A Benchmark for Merging Domain-Specialized LLMs

Yifei He, Siqi Zeng, Yuzheng Hu et al.

NEURIPS 2025arXiv:2505.10833
10
citations

Merging LoRAs like Playing LEGO: Pushing the Modularity of LoRA to Extremes Through Rank-Wise Clustering

Ziyu Zhao, tao shen, Didi Zhu et al.

ICLR 2025arXiv:2409.16167
35
citations

Mitigating Parameter Interference in Model Merging via Sharpness-Aware Fine-Tuning

Yeoreum Lee, Jinwook Jung, Sungyong Baik

ICLR 2025arXiv:2504.14662
8
citations

Mix Data or Merge Models? Balancing the Helpfulness, Honesty, and Harmlessness of Large Language Model via Model Merging

Jinluan Yang, Dingnan Jin, Anke Tang et al.

NEURIPS 2025arXiv:2502.06876
14
citations

Model merging with SVD to tie the Knots

George Stoica, Pratik Ramesh, Boglarka Ecsedi et al.

ICLR 2025arXiv:2410.19735
55
citations

Multimodal Lego: Model Merging and Fine-Tuning Across Topologies and Modalities in Biomedicine

Konstantin Hemker, Nikola Simidjievski, Mateja Jamnik

ICLR 2025arXiv:2405.19950
2
citations

PLeaS - Merging Models with Permutations and Least Squares

Anshul Nasery, Jonathan Hayase, Pang Wei Koh et al.

CVPR 2025arXiv:2407.02447
11
citations

Pretrained Hybrids with MAD Skills

Nicholas Roberts, Samuel Guo, Zhiqi Gao et al.

COLM 2025paper

RobustMerge: Parameter-Efficient Model Merging for MLLMs with Direction Robustness

Fanhu Zeng, Haiyang Guo, Fei Zhu et al.

NEURIPS 2025spotlightarXiv:2502.17159
9
citations

Task Vector Quantization for Memory-Efficient Model Merging

Youngeun Kim, Seunghwan Lee, Aecheon Jung et al.

ICCV 2025arXiv:2503.06921
3
citations

Towards Minimizing Feature Drift in Model Merging: Layer-wise Task Vector Fusion for Adaptive Knowledge Integration

Wenju Sun, Qingyong Li, Wen Wang et al.

NEURIPS 2025arXiv:2505.23859
3
citations

Train with Perturbation, Infer after Merging: A Two-Stage Framework for Continual Learning

Haomiao Qiu, Miao Zhang, Ziyue Qiao et al.

NEURIPS 2025arXiv:2505.22389

Diffusion Soup: Model Merging for Text-to-Image Diffusion Models

Benjamin J Biggs, Arjun Seshadri, Yang Zou et al.

ECCV 2024arXiv:2406.08431
24
citations

Equivariant Deep Weight Space Alignment

Aviv Navon, Aviv Shamsian, Ethan Fetaya et al.

ICML 2024arXiv:2310.13397
30
citations

Language Models are Super Mario: Absorbing Abilities from Homologous Models as a Free Lunch

Le Yu, Bowen Yu, Haiyang Yu et al.

ICML 2024arXiv:2311.03099
531
citations

Localizing Task Information for Improved Model Merging and Compression

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez et al.

ICML 2024arXiv:2405.07813
92
citations

Merging Multi-Task Models via Weight-Ensembling Mixture of Experts

Anke Tang, Li Shen, Yong Luo et al.

ICML 2024arXiv:2402.00433
84
citations

Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks

MohammadReza Davari, Eugene Belilovsky

ECCV 2024arXiv:2312.06795
106
citations

On the Emergence of Cross-Task Linearity in Pretraining-Finetuning Paradigm

Zhanpeng Zhou, Zijun Chen, Yilan Chen et al.

ICML 2024

Representation Surgery for Multi-Task Model Merging

Enneng Yang, Li Shen, Zhenyi Wang et al.

ICML 2024arXiv:2402.02705
87
citations

Training-Free Model Merging for Multi-target Domain Adaptation

Wenyi Li, Huan-ang Gao, Mingju Gao et al.

ECCV 2024arXiv:2407.13771
12
citations

Training-Free Pretrained Model Merging

Zhengqi Xu, Ke Yuan, Huiqiong Wang et al.

CVPR 2024arXiv:2403.01753
24
citations

Variational Learning is Effective for Large Deep Networks

Yuesong Shen, Nico Daheim, Bai Cong et al.

ICML 2024spotlightarXiv:2402.17641
47
citations