"nash equilibrium" Papers

17 papers found

A Policy-Gradient Approach to Solving Imperfect-Information Games with Best-Iterate Convergence

Mingyang Liu, Gabriele Farina, Asuman Ozdaglar

ICLR 2025arXiv:2408.00751
3
citations

Classic but Everlasting: Traditional Gradient-Based Algorithms Converge Fast Even in Time-Varying Multi-Player Games

Yanzheng Chen, Jun Yu

ICLR 2025

Divergence-Regularized Discounted Aggregation: Equilibrium Finding in Multiplayer Partially Observable Stochastic Games

Runyu Lu, Yuanheng Zhu, Dongbin Zhao

ICLR 2025
3
citations

Efficient Last-Iterate Convergence in Solving Extensive-Form Games

Linjian Meng, Tianpei Yang, Youzhi Zhang et al.

NEURIPS 2025

Equilibrium Policy Generalization: A Reinforcement Learning Framework for Cross-Graph Zero-Shot Generalization in Pursuit-Evasion Games

Runyu Lu, Peng Zhang, Ruochuan Shi et al.

NEURIPS 2025arXiv:2511.00811
2
citations

On Feasible Rewards in Multi-Agent Inverse Reinforcement Learning

Till Freihaut, Giorgia Ramponi

NEURIPS 2025spotlightarXiv:2411.15046
2
citations

Principled Long-Tailed Generative Modeling via Diffusion Models

Pranoy Das, Kexin Fu, Abolfazl Hashemi et al.

NEURIPS 2025oral

Provable Robust Overfitting Mitigation in Wasserstein Distributionally Robust Optimization

Shuang Liu, Yihan Wang, Yifan Zhu et al.

ICLR 2025arXiv:2503.04315

Adaptively Perturbed Mirror Descent for Learning in Games

Kenshi Abe, Kaito Ariu, Mitsuki Sakamoto et al.

ICML 2024arXiv:2305.16610
9
citations

Causal Inference from Competing Treatments

Ana-Andreea Stoica, Vivian Y. Nastl, Moritz Hardt

ICML 2024arXiv:2406.03422
1
citations

Competition among Pairwise Lottery Contests

Xiaotie Deng, Hangxin Gan, Ningyuan Li et al.

AAAI 2024paperarXiv:2312.11953
4
citations

Human Alignment of Large Language Models through Online Preference Optimisation

Daniele Calandriello, Zhaohan Guo, REMI MUNOS et al.

ICML 2024arXiv:2403.08635
88
citations

Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games

Songtao Feng, Ming Yin, Yu-Xiang Wang et al.

ICML 2024arXiv:2308.08858
2
citations

Minimally Modifying a Markov Game to Achieve Any Nash Equilibrium and Value

Young Wu, Jeremy McMahan, Yiding Chen et al.

ICML 2024arXiv:2311.00582
3
citations

Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL

Jiawei Huang, Niao He, Andreas Krause

ICML 2024arXiv:2402.05724
8
citations

Multi-Sender Persuasion: A Computational Perspective

Safwan Hossain, Tonghan Wang, Tao Lin et al.

ICML 2024arXiv:2402.04971
14
citations

Nash Learning from Human Feedback

REMI MUNOS, Michal Valko, Daniele Calandriello et al.

ICML 2024spotlightarXiv:2312.00886
195
citations