"neural operators" Papers

25 papers found

AneuG-Flow: A Large-Scale Synthetic Dataset of Diverse Intracranial Aneurysm Geometries and Hemodynamics

Wenhao Ding, Yiying Sheng, Simão de Castro et al.

NEURIPS 2025oral

A Unified Model for Compressed Sensing MRI Across Undersampling Patterns

Armeet Singh Jatyani, Jiayun Wang, Aditi Chandrashekar et al.

CVPR 2025arXiv:2410.16290
7
citations

Discretization-invariance? On the Discretization Mismatch Errors in Neural Operators

Wenhan Gao, Ruichen Xu, Yuefan Deng et al.

ICLR 2025
18
citations

Hybrid Latent Representations for PDE Emulation

Ali Can Bekar, Siddhant Agarwal, Christian Hüttig et al.

NEURIPS 2025

In-Context Learning of Stochastic Differential Equations with Foundation Inference Models

Patrick Seifner, Kostadin Cvejoski, David Berghaus et al.

NEURIPS 2025arXiv:2502.19049
5
citations

Infinite Neural Operators: Gaussian processes on functions

Daniel Augusto de Souza, Yuchen Zhu, Jake Cunningham et al.

NEURIPS 2025arXiv:2510.16675
1
citations

NeurOp-Diff: Continuous Remote Sensing Image Super-Resolution via Neural Operator Diffusion

Zihao Xu, Yuzhi Tang, Bowen Xu et al.

ICCV 2025
5
citations

Quantitative Approximation for Neural Operators in Nonlinear Parabolic Equations

Takashi Furuya, Koichi Taniguchi, Satoshi Okuda

ICLR 2025arXiv:2410.02151
4
citations

S-Crescendo: A Nested Transformer Weaving Framework for Scalable Nonlinear System in S-Domain Representation

Junlang Huang, Chen Hao, Li Luo et al.

NEURIPS 2025arXiv:2505.11843

Sensitivity-Constrained Fourier Neural Operators for Forward and Inverse Problems in Parametric Differential Equations

Abdolmehdi Behroozi, Chaopeng Shen, Daniel Kifer

ICLR 2025arXiv:2505.08740
5
citations

Solving Differential Equations with Constrained Learning

Viggo Moro, Luiz Chamon

ICLR 2025arXiv:2410.22796
2
citations

Stochastic Process Learning via Operator Flow Matching

Yaozhong Shi, Zachary Ross, Domniki Asimaki et al.

NEURIPS 2025spotlightarXiv:2501.04126
7
citations

Thompson Sampling in Function Spaces via Neural Operators

Rafael Oliveira, Xuesong Wang, Kian Ming Chai et al.

NEURIPS 2025arXiv:2506.21894

Uncertainty-Informed Meta Pseudo Labeling for Surrogate Modeling with Limited Labeled Data

Xingyu Ren, Pengwei Liu, Pengkai Wang et al.

NEURIPS 2025

Zero-shot Imputation with Foundation Inference Models for Dynamical Systems

Patrick Seifner, Kostadin Cvejoski, Antonia Körner et al.

ICLR 2025arXiv:2402.07594
10
citations

Beyond Regular Grids: Fourier-Based Neural Operators on Arbitrary Domains

Levi Lingsch, Mike Yan Michelis, Emmanuel de Bézenac et al.

ICML 2024arXiv:2305.19663
19
citations

DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training

Zhongkai Hao, Chang Su, LIU SONGMING et al.

ICML 2024arXiv:2403.03542
92
citations

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Ning Liu, Yiming Fan, Xianyi Zeng et al.

ICML 2024spotlightarXiv:2312.11176
16
citations

Improved Operator Learning by Orthogonal Attention

Zipeng Xiao, Zhongkai Hao, Bokai Lin et al.

ICML 2024spotlightarXiv:2310.12487
40
citations

Neural operators meet conjugate gradients: The FCG-NO method for efficient PDE solving

Alexander Rudikov, Fanaskov Vladimir, Ekaterina Muravleva et al.

ICML 2024arXiv:2402.05598
11
citations

Neural Operators with Localized Integral and Differential Kernels

Miguel Liu-Schiaffini, Julius Berner, Boris Bonev et al.

ICML 2024arXiv:2402.16845
56
citations

Positional Knowledge is All You Need: Position-induced Transformer (PiT) for Operator Learning

Junfeng CHEN, Kailiang Wu

ICML 2024arXiv:2405.09285
14
citations

Reference Neural Operators: Learning the Smooth Dependence of Solutions of PDEs on Geometric Deformations

Ze Cheng, Zhongkai Hao, Wang Xiaoqiang et al.

ICML 2024arXiv:2405.17509
5
citations

Towards General Neural Surrogate Solvers with Specialized Neural Accelerators

Chenkai Mao, Robert Lupoiu, Tianxiang Dai et al.

ICML 2024arXiv:2405.02351
10
citations

Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs

Chandra Mouli Sekar, Danielle Robinson, Shima Alizadeh et al.

ICML 2024