"node representation learning" Papers

14 papers found

Discrete Curvature Graph Information Bottleneck

Xingcheng Fu, Jian Wang, Yisen Gao et al.

AAAI 2025paperarXiv:2412.19993
3
citations

GRAIN: Multi-Granular and Implicit Information Aggregation Graph Neural Network for Heterophilous Graphs

Songwei Zhao, Yuan Jiang, Zijing Zhang et al.

AAAI 2025paperarXiv:2504.06649
3
citations

Normalize Then Propagate: Efficient Homophilous Regularization for Few-Shot Semi-Supervised Node Classification

Baoming Zhang, MingCai Chen, Jianqing Song et al.

AAAI 2025paperarXiv:2501.08581
1
citations

Self-supervised Masked Graph Autoencoder via Structure-aware Curriculum

Haoyang Li, Xin Wang, Zeyang Zhang et al.

ICML 2025spotlight

Automated Loss function Search for Class-imbalanced Node Classification

Xinyu Guo, KAI WU, Xiaoyu Zhang et al.

ICML 2024arXiv:2405.14133
2
citations

Cooperative Graph Neural Networks

Ben Finkelshtein, Xingyue Huang, Michael Bronstein et al.

ICML 2024arXiv:2310.01267
52
citations

Deep Structural Knowledge Exploitation and Synergy for Estimating Node Importance Value on Heterogeneous Information Networks

Yankai Chen, Yixiang Fang, Qiongyan Wang et al.

AAAI 2024paperarXiv:2402.12411
14
citations

FairSIN: Achieving Fairness in Graph Neural Networks through Sensitive Information Neutralization

Cheng Yang, Jixi Liu, Yunhe Yan et al.

AAAI 2024paperarXiv:2403.12474
33
citations

Mitigating Oversmoothing Through Reverse Process of GNNs for Heterophilic Graphs

MoonJeong Park, Jaeseung Heo, Dongwoo Kim

ICML 2024arXiv:2403.10543
6
citations

On Which Nodes Does GCN Fail? Enhancing GCN From the Node Perspective

Jincheng Huang, Jialie SHEN, Xiaoshuang Shi et al.

ICML 2024

Perfect Alignment May be Poisonous to Graph Contrastive Learning

Jingyu Liu, Huayi Tang, Yong Liu

ICML 2024arXiv:2310.03977
4
citations

Rethinking Graph Masked Autoencoders through Alignment and Uniformity

Liang Wang, Xiang Tao, Qiang Liu et al.

AAAI 2024paperarXiv:2402.07225
32
citations

Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs

Langzhang Liang, Sunwoo Kim, Kijung Shin et al.

ICML 2024arXiv:2405.20652
13
citations

Towards Inductive Robustness: Distilling and Fostering Wave-Induced Resonance in Transductive GCNs against Graph Adversarial Attacks

Ao Liu, Wenshan Li, Tao Li et al.

AAAI 2024paperarXiv:2312.08651
7
citations