"principal component analysis" Papers
9 papers found
Conference
A Geometric Analysis of PCA
Ayoub El Hanchi, Murat Erdogdu, Chris Maddison
NEURIPS 2025arXiv:2510.20978
1
citations
Differentiable Optimization of Similarity Scores Between Models and Brains
Nathan Cloos, Moufan Li, Markus Siegel et al.
ICLR 2025arXiv:2407.07059
11
citations
EigenGS Representation: From Eigenspace to Gaussian Image Space
LO-WEI TAI, Ching-En Ching En, Li et al.
CVPR 2025arXiv:2503.07446
3
citations
PointOBB-v2: Towards Simpler, Faster, and Stronger Single Point Supervised Oriented Object Detection
Botao Ren, Xue Yang, Yi Yu et al.
ICLR 2025arXiv:2410.08210
17
citations
Rethinking PCA Through Duality
Jan Quan, Johan Suykens, Panagiotis Patrinos
NEURIPS 2025arXiv:2510.18130
What Do Latent Action Models Actually Learn?
Chuheng Zhang, Tim Pearce, Pushi Zhang et al.
NEURIPS 2025arXiv:2506.15691
11
citations
W-PCA Based Gradient-Free Proxy for Efficient Search of Lightweight Language Models
Shang Wang
ICLR 2025arXiv:2504.15983
On the Error-Propagation of Inexact Hotelling's Deflation for Principal Component Analysis
Fangshuo Liao, J. Lyle Kim, Cruz Barnum et al.
ICML 2024arXiv:2310.04283
Why do Variational Autoencoders Really Promote Disentanglement?
Pratik Bhowal, Achint Soni, Sirisha Rambhatla
ICML 2024