"privacy preservation" Papers

27 papers found

An Inversion-based Measure of Memorization for Diffusion Models

Zhe Ma, Qingming Li, Xuhong Zhang et al.

ICCV 2025arXiv:2405.05846
2
citations

Catastrophic Failure of LLM Unlearning via Quantization

Zhiwei Zhang, Fali Wang, Xiaomin Li et al.

ICLR 2025arXiv:2410.16454
49
citations

CPSample: Classifier Protected Sampling for Guarding Training Data During Diffusion

Joshua Kazdan, Hao Sun, Jiaqi Han et al.

ICLR 2025arXiv:2409.07025
2
citations

Curriculum Model Merging: Harmonizing Chemical LLMs for Enhanced Cross-Task Generalization

Baoyi He, Luotian Yuan, Ying Wei et al.

NEURIPS 2025

Diffusion Models for Attribution

Xiongren Chen, Jiuyong Li, Jixue Liu et al.

AAAI 2025paperarXiv:2403.14790
12
citations

Does Training with Synthetic Data Truly Protect Privacy?

Yunpeng Zhao, Jie Zhang

ICLR 2025arXiv:2502.12976
8
citations

EBS-CFL: Efficient and Byzantine-robust Secure Clustered Federated Learning

Zhiqiang Li, Haiyong Bao, Menghong Guan et al.

AAAI 2025paperarXiv:2506.13612
3
citations

Edit Away and My Face Will not Stay: Personal Biometric Defense against Malicious Generative Editing

Hanhui Wang, Yihua Zhang, Ruizheng Bai et al.

CVPR 2025arXiv:2411.16832
8
citations

FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors

Changlong Shi, He Zhao, Bingjie Zhang et al.

CVPR 2025arXiv:2503.15842
7
citations

GC4NC: A Benchmark Framework for Graph Condensation on Node Classification with New Insights

Shengbo Gong, Juntong Ni, Noveen Sachdeva et al.

NEURIPS 2025arXiv:2406.16715
8
citations

Know2Vec: A Black-Box Proxy for Neural Network Retrieval

Zhuoyi Shang, Yanwei Liu, Jinxia Liu et al.

AAAI 2025paperarXiv:2412.16251
1
citations

Machine Unlearning Doesn't Do What You Think: Lessons for Generative AI Policy and Research

A. Feder Cooper, Christopher A. Choquette-Choo, Miranda Bogen et al.

NEURIPS 2025oralarXiv:2412.06966
2
citations

Medical Manifestation-Aware De-Identification

Yuan Tian, Shuo Wang, Guangtao Zhai

AAAI 2025paperarXiv:2412.10804
3
citations

Memories of Forgotten Concepts

Matan Rusanovsky, Shimon Malnick, Amir Jevnisek et al.

CVPR 2025highlightarXiv:2412.00782
6
citations

OmniFC: Rethinking Federated Clustering via Lossless and Secure Distance Reconstruction

Jie Yan, Jing Liu, Zhong-Yuan Zhang

NEURIPS 2025arXiv:2505.13071

Prompt-based Unifying Inference Attack on Graph Neural Networks

Yuecen Wei, Xingcheng Fu, Lingyun Liu et al.

AAAI 2025paperarXiv:2412.15735
6
citations

TimeDP: Learning to Generate Multi-Domain Time Series with Domain Prompts

Yu-Hao Huang, Chang Xu, Yueying Wu et al.

AAAI 2025paperarXiv:2501.05403
15
citations

DecentNeRFs: Decentralized Neural Radiance Fields from Crowdsourced Images

Zaid Tasneem, Akshat Dave, Abhishek Singh et al.

ECCV 2024arXiv:2403.13199
4
citations

Diffusion-Driven Data Replay: A Novel Approach to Combat Forgetting in Federated Class Continual Learning

Jinglin Liang, Jin Zhong, Hanlin Gu et al.

ECCV 2024arXiv:2409.01128
19
citations

Feature Diversification and Adaptation for Federated Domain Generalization

Seunghan Yang, Seokeon Choi, Hyunsin Park et al.

ECCV 2024arXiv:2407.08245
5
citations

FedVAD: Enhancing Federated Video Anomaly Detection with GPT-Driven Semantic Distillation

Fan Qi, Ruijie Pan, Huaiwen Zhang et al.

ECCV 2024
2
citations

Leak and Learn: An Attacker's Cookbook to Train Using Leaked Data from Federated Learning

Joshua C. Zhao, Ahaan Dabholkar, Atul Sharma et al.

CVPR 2024arXiv:2403.18144
4
citations

Non-exemplar Online Class-Incremental Continual Learning via Dual-Prototype Self-Augment and Refinement

Fushuo Huo, Wenchao Xu, Jingcai Guo et al.

AAAI 2024paperarXiv:2303.10891
23
citations

PID: Prompt-Independent Data Protection Against Latent Diffusion Models

Ang Li, Yichuan Mo, Mingjie Li et al.

ICML 2024arXiv:2406.15305
5
citations

Real-Fake: Effective Training Data Synthesis Through Distribution Matching

Jianhao Yuan, Jie Zhang, Shuyang Sun et al.

ICLR 2024arXiv:2310.10402
45
citations

Revisiting Gradient Pruning: A Dual Realization for Defending against Gradient Attacks

Lulu Xue, Shengshan Hu, Ruizhi Zhao et al.

AAAI 2024paperarXiv:2401.16687
8
citations

To Each (Textual Sequence) Its Own: Improving Memorized-Data Unlearning in Large Language Models

George-Octavian Bărbulescu, Peter Triantafillou

ICML 2024