Poster "prompt engineering" Papers

25 papers found

Ask, and it shall be given: On the Turing completeness of prompting

Ruizhong Qiu, Zhe Xu, Wenxuan Bao et al.

ICLR 2025arXiv:2411.01992
6
citations

BACON: Improving Clarity of Image Captions via Bag-of-Concept Graphs

Zhantao Yang, Ruili Feng, Keyu Yan et al.

CVPR 2025arXiv:2407.03314
3
citations

Can LLMs Separate Instructions From Data? And What Do We Even Mean By That?

Egor Zverev, Sahar Abdelnabi, Soroush Tabesh et al.

ICLR 2025arXiv:2403.06833
48
citations

Can Watermarked LLMs be Identified by Users via Crafted Prompts?

Aiwei Liu, Sheng Guan, Yiming Liu et al.

ICLR 2025arXiv:2410.03168
12
citations

Concept Reachability in Diffusion Models: Beyond Dataset Constraints

Marta Aparicio Rodriguez, Xenia Miscouridou, Anastasia Borovykh

ICML 2025arXiv:2505.19313

Difference Inversion: Interpolate and Isolate the Difference with Token Consistency for Image Analogy Generation

Hyunsoo Kim, Donghyun Kim, Suhyun Kim

CVPR 2025arXiv:2506.07750
1
citations

Enhancing Graph Of Thought: Enhancing Prompts with LLM Rationales and Dynamic Temperature Control

Sunguk Shin, Youngjoon Kim

ICLR 2025
3
citations

Fantastic Copyrighted Beasts and How (Not) to Generate Them

Luxi He, Yangsibo Huang, Weijia Shi et al.

ICLR 2025arXiv:2406.14526
24
citations

Large (Vision) Language Models are Unsupervised In-Context Learners

Artyom Gadetsky, Andrei Atanov, Yulun Jiang et al.

ICLR 2025arXiv:2504.02349
3
citations

Multi-Objective Hyperparameter Selection via Hypothesis Testing on Reliability Graphs

Amirmohammad Farzaneh, Osvaldo Simeone

NEURIPS 2025arXiv:2501.13018
1
citations

No Loss, No Gain: Gated Refinement and Adaptive Compression for Prompt Optimization

Wenhang Shi, Yiren Chen, Shuqing Bian et al.

NEURIPS 2025arXiv:2509.23387
1
citations

Pareto Prompt Optimization

Guang Zhao, Byung-Jun Yoon, Gilchan Park et al.

ICLR 2025
1
citations

ProAdvPrompter: A Two-Stage Journey to Effective Adversarial Prompting for LLMs

Hao Di, Tong He, Haishan Ye et al.

ICLR 2025
2
citations

Quantifying Elicitation of Latent Capabilities in Language Models

Elizabeth Donoway, Hailey Joren, Arushi Somani et al.

NEURIPS 2025

SPARC: Score Prompting and Adaptive Fusion for Zero-Shot Multi-Label Recognition in Vision-Language Models

Kevin Miller, Aditya Gangrade, Samarth Mishra et al.

CVPR 2025arXiv:2502.16911
1
citations

AlignSAM: Aligning Segment Anything Model to Open Context via Reinforcement Learning

Duojun Huang, Xinyu Xiong, Jie Ma et al.

CVPR 2024arXiv:2406.00480
24
citations

ArtWhisperer: A Dataset for Characterizing Human-AI Interactions in Artistic Creations

Kailas Vodrahalli, James Zou

ICML 2024arXiv:2306.08141
9
citations

Canonical Shape Projection is All You Need for 3D Few-shot Class Incremental Learning

Ali Cheraghian, Zeeshan Hayder, Sameeea Ramasinghe et al.

ECCV 2024
4
citations

Customization Assistant for Text-to-Image Generation

Yufan Zhou, Ruiyi Zhang, Jiuxiang Gu et al.

CVPR 2024arXiv:2312.03045
15
citations

GPTSwarm: Language Agents as Optimizable Graphs

Mingchen Zhuge, Wenyi Wang, Louis Kirsch et al.

ICML 2024

In-context Vectors: Making In Context Learning More Effective and Controllable Through Latent Space Steering

Sheng Liu, Haotian Ye, Lei Xing et al.

ICML 2024arXiv:2311.06668
224
citations

InstructZero: Efficient Instruction Optimization for Black-Box Large Language Models

Lichang Chen, Jiuhai Chen, Tom Goldstein et al.

ICML 2024arXiv:2306.03082
59
citations

LLMGA: Multimodal Large Language Model based Generation Assistant

Bin Xia, Shiyin Wang, Yingfan Tao et al.

ECCV 2024arXiv:2311.16500
25
citations

Position: Towards Implicit Prompt For Text-To-Image Models

Yue Yang, Yuqi Lin, Hong Liu et al.

ICML 2024arXiv:2403.02118
1
citations

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

Zhiliang Chen, Chuan-Sheng Foo, Bryan Kian Hsiang Low

ICML 2024