"recommender systems" Papers

24 papers found

Advancing Loss Functions in Recommender Systems: A Comparative Study with a Rényi Divergence-Based Solution

Shengjia Zhang, Jiawei Chen, Changdong Li et al.

AAAI 2025paperarXiv:2506.15120
5
citations

Can LLMs Outshine Conventional Recommenders? A Comparative Evaluation

Qijiong Liu, Jieming Zhu, Lu Fan et al.

NEURIPS 2025arXiv:2503.05493
4
citations

Direct Routing Gradient (DRGrad): A Personalized Information Surgery for Multi-Task Learning (MTL) Recommendations

Yuguang Liu, Yiyun Miao, Luyao Xia

AAAI 2025paperarXiv:2510.09643

Fading to Grow: Growing Preference Ratios via Preference Fading Discrete Diffusion for Recommendation

Guoqing Hu, An Zhang, Shuchang Liu et al.

NEURIPS 2025arXiv:2509.26063

Language Representations Can be What Recommenders Need: Findings and Potentials

Leheng Sheng, An Zhang, Yi Zhang et al.

ICLR 2025arXiv:2407.05441
26
citations

MultiScale Contextual Bandits for Long Term Objectives

Richa Rastogi, Yuta Saito, Thorsten Joachims

NEURIPS 2025arXiv:2503.17674

Negative Feedback Really Matters: Signed Dual-Channel Graph Contrastive Learning Framework for Recommendation

Leqi Zheng, Chaokun Wang, Zixin Song et al.

NEURIPS 2025

Normed Spaces for Graph Embedding

Wei Zhao, Diaaeldin Taha, J. Riestenberg et al.

ICLR 2025arXiv:2312.01502
1
citations

One for Dozens: Adaptive REcommendation for All Domains with Counterfactual Augmentation

Huishi Luo, Yiwen Chen, Yiqing Wu et al.

AAAI 2025paperarXiv:2412.11905
2
citations

ORBIT - Open Recommendation Benchmark for Reproducible Research with Hidden Tests

Jingyuan He, Jiongnan Liu, Vishan Oberoi et al.

NEURIPS 2025arXiv:2510.26095

PAC-Bayes Bounds for Multivariate Linear Regression and Linear Autoencoders

Ruixin Guo, Ruoming Jin, Xinyu Li et al.

NEURIPS 2025arXiv:2512.12905
1
citations

Rethinking Byzantine Robustness in Federated Recommendation from Sparse Aggregation Perspective

Zhongjian Zhang, Mengmei Zhang, Xiao Wang et al.

AAAI 2025paperarXiv:2501.03301
3
citations

TranSUN: A Preemptive Paradigm to Eradicate Retransformation Bias Intrinsically from Regression Models in Recommender Systems

Jiahao Yu, Haozhuang Liu, Yeqiu Yang et al.

NEURIPS 2025arXiv:2505.13881
2
citations

True Impact of Cascade Length in Contextual Cascading Bandits

Hyun-jun Choi, Joongkyu Lee, Min-hwan Oh

NEURIPS 2025

Who You Are Matters: Bridging Interests and Social Roles via LLM-Enhanced Logic Recommendation

Qing Yu, Xiaobei Wang, Shuchang Liu et al.

NEURIPS 2025oral
3
citations

Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential Recommendations

Lei Li, Jianxun Lian, Xiao Zhou et al.

AAAI 2024paperarXiv:2401.06633
9
citations

Decoupled Training: Return of Frustratingly Easy Multi-Domain Learning

Ximei Wang, Junwei Pan, Xingzhuo Guo et al.

AAAI 2024paperarXiv:2309.10302
4
citations

DGCLUSTER: A Neural Framework for Attributed Graph Clustering via Modularity Maximization

Aritra Bhowmick, Mert Kosan, Zexi Huang et al.

AAAI 2024paperarXiv:2312.12697
34
citations

High-Order Contrastive Learning with Fine-grained Comparative Levels for Sparse Ordinal Tensor Completion

Yu Dai, Junchen Shen, Zijie Zhai et al.

ICML 2024

MoMo: Momentum Models for Adaptive Learning Rates

Fabian Schaipp, Ruben Ohana, Michael Eickenberg et al.

ICML 2024arXiv:2305.07583
20
citations

On the Unexpected Effectiveness of Reinforcement Learning for Sequential Recommendation

Álvaro Labarca Silva, Denis Parra, Rodrigo A Toro Icarte

ICML 2024

Relaxing the Accurate Imputation Assumption in Doubly Robust Learning for Debiased Collaborative Filtering

Haoxuan Li, Chunyuan Zheng, Shuyi Wang et al.

ICML 2024spotlight

STEM: Unleashing the Power of Embeddings for Multi-Task Recommendation

Liangcai Su, Junwei Pan, Ximei Wang et al.

AAAI 2024paperarXiv:2308.13537
39
citations

Temporally and Distributionally Robust Optimization for Cold-Start Recommendation

Xinyu Lin, Wenjie Wang, Jujia Zhao et al.

AAAI 2024paperarXiv:2312.09901
19
citations