"recurrent neural networks" Papers

30 papers found

BRAID: Input-driven Nonlinear Dynamical Modeling of Neural-Behavioral Data

Parsa Vahidi, Omid G. Sani, Maryam Shanechi

ICLR 2025oralarXiv:2509.18627
7
citations

Compositional Reasoning with Transformers, RNNs, and Chain of Thought

Gilad Yehudai, Noah Amsel, Joan Bruna

NEURIPS 2025arXiv:2503.01544
2
citations

Concept-Guided Interpretability via Neural Chunking

Shuchen Wu, Stephan Alaniz, Shyamgopal Karthik et al.

NEURIPS 2025arXiv:2505.11576

Efficient Allocation of Working Memory Resource for Utility Maximization in Humans and Recurrent Neural Networks

Qingqing Yang, Hsin-Hung Li

NEURIPS 2025oral

Expressivity of Neural Networks with Random Weights and Learned Biases

Ezekiel Williams, Alexandre Payeur, Avery Ryoo et al.

ICLR 2025arXiv:2407.00957
7
citations

Flow Equivariant Recurrent Neural Networks

Andy Keller

NEURIPS 2025spotlightarXiv:2507.14793
4
citations

Hardware-aligned Hierarchical Sparse Attention for Efficient Long-term Memory Access

Xiang Hu, Jiaqi Leng, Jun Zhao et al.

NEURIPS 2025arXiv:2504.16795
3
citations

High-dimensional neuronal activity from low-dimensional latent dynamics: a solvable model

Valentin Schmutz, Ali Haydaroğlu, Shuqi Wang et al.

NEURIPS 2025oral
2
citations

Language Models Need Inductive Biases to Count Inductively

Yingshan Chang, Yonatan Bisk

ICLR 2025arXiv:2405.20131
20
citations

Locally Connected Echo State Networks for Time Series Forecasting

Filip Matzner, František Mráz

ICLR 2025
1
citations

Mechanistic Interpretability of RNNs emulating Hidden Markov Models

Elia Torre, Michele Viscione, Lucas Pompe et al.

NEURIPS 2025arXiv:2510.25674

Metric Automata Theory: A Unifying Theory of RNNs

Adam Dankowiakowski, Alessandro Ronca

NEURIPS 2025

Nonparametric Quantile Regression with ReLU-Activated Recurrent Neural Networks

Hang Yu, Lyumin Wu, Wenxin Zhou et al.

NEURIPS 2025

On Conformal Isometry of Grid Cells: Learning Distance-Preserving Position Embedding

Dehong Xu, Ruiqi Gao, Wenhao Zhang et al.

ICLR 2025arXiv:2405.16865
11
citations

RAT: Bridging RNN Efficiency and Attention Accuracy via Chunk-based Sequence Modeling

Xiuying Wei, Anunay Yadav, Razvan Pascanu et al.

NEURIPS 2025arXiv:2507.04416

Real-Time Recurrent Reinforcement Learning

Julian Lemmel, Radu Grosu

AAAI 2025paperarXiv:2311.04830
6
citations

Revisiting Bi-Linear State Transitions in Recurrent Neural Networks

Reza Ebrahimi, Roland Memisevic

NEURIPS 2025arXiv:2505.21749
1
citations

Revisiting Glorot Initialization for Long-Range Linear Recurrences

Noga Bar, Mariia Seleznova, ‪Yotam Alexander‬‏ et al.

NEURIPS 2025arXiv:2505.19827

RNNs are not Transformers (Yet): The Key Bottleneck on In-Context Retrieval

Kaiyue Wen, Xingyu Dang, Kaifeng Lyu

ICLR 2025arXiv:2402.18510
51
citations

ViT-Linearizer: Distilling Quadratic Knowledge into Linear-Time Vision Models

Guoyizhe Wei, Rama Chellappa

ICCV 2025arXiv:2504.00037
3
citations

Volume Transmission Implements Context Factorization to Target Online Credit Assignment and Enable Compositional Generalization

Matthew Bull, Po-Chen Kuo, Andrew Smith et al.

NEURIPS 2025

Emergent mechanisms for long timescales depend on training curriculum and affect performance in memory tasks

Sina Khajehabdollahi, Roxana Zeraati, Emmanouil Giannakakis et al.

ICLR 2024oralarXiv:2309.12927
9
citations

Exploiting Symmetric Temporally Sparse BPTT for Efficient RNN Training

Xi Chen, Chang Gao, Zuowen Wang et al.

AAAI 2024paperarXiv:2312.09391
4
citations

Hidden Traveling Waves bind Working Memory Variables in Recurrent Neural Networks

Arjun Karuvally, Terrence Sejnowski, Hava Siegelmann

ICML 2024arXiv:2402.10163
7
citations

Learning Useful Representations of Recurrent Neural Network Weight Matrices

Vincent Herrmann, Francesco Faccio, Jürgen Schmidhuber

ICML 2024arXiv:2403.11998
12
citations

PixelRNN: In-pixel Recurrent Neural Networks for End-to-end–optimized Perception with Neural Sensors

Haley So, Laurie Bose, Piotr Dudek et al.

CVPR 2024arXiv:2304.05440
7
citations

Position: Categorical Deep Learning is an Algebraic Theory of All Architectures

Bruno Gavranović, Paul Lessard, Andrew Dudzik et al.

ICML 2024arXiv:2402.15332
18
citations

Rethinking Transformers in Solving POMDPs

Chenhao Lu, Ruizhe Shi, Yuyao Liu et al.

ICML 2024arXiv:2405.17358
9
citations

Scalable Real-Time Recurrent Learning Using Columnar-Constructive Networks

Khurram Javed, Haseeb Shah, Richard Sutton et al.

ICML 2024arXiv:2302.05326
10
citations

The Illusion of State in State-Space Models

William Merrill, Jackson Petty, Ashish Sabharwal

ICML 2024arXiv:2404.08819
128
citations