"retrieval augmented generation" Papers

13 papers found

Boosting Knowledge Utilization in Multimodal Large Language Models via Adaptive Logits Fusion and Attention Reallocation

Wenbin An, Jiahao Nie, Feng Tian et al.

NEURIPS 2025oral

Chain-of-Retrieval Augmented Generation

Liang Wang, Haonan Chen, Nan Yang et al.

NEURIPS 2025arXiv:2501.14342
28
citations

Collab-RAG: Boosting Retrieval-Augmented Generation for Complex Question Answering via White-Box and Black-Box LLM Collaboration

Ran Xu, Wenqi Shi, Yuchen Zhuang et al.

COLM 2025paperarXiv:2504.04915
17
citations

ColPali: Efficient Document Retrieval with Vision Language Models

Manuel Faysse, Hugues Sibille, Tony Wu et al.

ICLR 2025arXiv:2407.01449
94
citations

EAReranker: Efficient Embedding Adequacy Assessment for Retrieval Augmented Generation

Dongyang Zeng, Yaping Liu, Wei Zhang et al.

NEURIPS 2025

Inference Scaling for Long-Context Retrieval Augmented Generation

Zhenrui Yue, Honglei Zhuang, Aijun Bai et al.

ICLR 2025arXiv:2410.04343
54
citations

MIR-Bench: Can Your LLM Recognize Complicated Patterns via Many-Shot In-Context Reasoning?

Kai Yan, Zhan Ling, Kang Liu et al.

NEURIPS 2025arXiv:2502.09933
1
citations

MMAT-1M: A Large Reasoning Dataset for Multimodal Agent Tuning

Tianhong Gao, Yannian Fu, Weiqun Wu et al.

ICCV 2025arXiv:2507.21924
1
citations

Retrieving Semantics from the Deep: an RAG Solution for Gesture Synthesis

M. Hamza Mughal, Rishabh Dabral, Merel CJ Scholman et al.

CVPR 2025arXiv:2412.06786
14
citations

Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting

Zilong (Ryan) Wang, Zifeng Wang, Long Le et al.

ICLR 2025arXiv:2407.08223
78
citations

Grounding Language Models for Visual Entity Recognition

Zilin Xiao, Ming Gong, Paola Cascante-Bonilla et al.

ECCV 2024arXiv:2402.18695
13
citations

Improving Medical Multi-modal Contrastive Learning with Expert Annotations

Yogesh Kumar, Pekka Marttinen

ECCV 2024arXiv:2403.10153
23
citations

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

Han Fu, Jian Tan, Pinhan Zhang et al.

ICML 2024