"scientific machine learning" Papers

11 papers found

Collapsing Taylor Mode Automatic Differentiation

Felix Dangel, Tim Siebert, Marius Zeinhofer et al.

NEURIPS 2025arXiv:2505.13644

F-Adapter: Frequency-Adaptive Parameter-Efficient Fine-Tuning in Scientific Machine Learning

Hangwei Zhang, Chun Kang, Yan Wang et al.

NEURIPS 2025arXiv:2509.23173

Physics-Informed Diffusion Models

Jan-Hendrik Bastek, WaiChing Sun, Dennis Kochmann

ICLR 2025arXiv:2403.14404
57
citations

PINN Balls: Scaling Second-Order Methods for PINNs with Domain Decomposition and Adaptive Sampling

Andrea Bonfanti, Ismael Medina, Roman List et al.

NEURIPS 2025arXiv:2510.21262

Semi-Implicit Neural Ordinary Differential Equations

Hong Zhang, Ying Liu, Romit Maulik

AAAI 2025paperarXiv:2412.11301
2
citations

UniFoil: A Universal Dataset of Airfoils in Transitional and Turbulent Regimes for Subsonic and Transonic Flows

Rohit Kanchi, Benjamin Melanson, Nithin Somasekharan et al.

NEURIPS 2025arXiv:2505.21124
2
citations

A Graph Dynamics Prior for Relational Inference

Liming Pan, Cheng Shi, Ivan Dokmanic

AAAI 2024paperarXiv:2306.06041
4
citations

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Ning Liu, Yiming Fan, Xianyi Zeng et al.

ICML 2024spotlightarXiv:2312.11176
16
citations

Mechanistic Neural Networks for Scientific Machine Learning

Adeel Pervez, Francesco Locatello, Efstratios Gavves

ICML 2024arXiv:2402.13077
12
citations

Position: Optimization in SciML Should Employ the Function Space Geometry

Johannes Müller, Marius Zeinhofer

ICML 2024arXiv:2402.07318
19
citations

Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

Yuyang Wang, Ahmed Elhag, Navdeep Jaitly et al.

ICML 2024arXiv:2311.17932
54
citations