"statistical learning theory" Papers

12 papers found

Bridging the Gap Between f-divergences and Bayes Hilbert Spaces

Linus Lach, Alexander Fottner, Yarema Okhrin

ICLR 2025

Data-Driven Performance Guarantees for Classical and Learned Optimizers

Rajiv Sambharya, Bartolomeo Stellato

NEURIPS 2025arXiv:2404.13831
10
citations

Learning with Statistical Equality Constraints

Aneesh Barthakur, Luiz Chamon

NEURIPS 2025arXiv:2511.14320

PAC-Bayes Bounds for Multivariate Linear Regression and Linear Autoencoders

Ruixin Guo, Ruoming Jin, Xinyu Li et al.

NEURIPS 2025arXiv:2512.12905
1
citations

Algorithmic Stability Unleashed: Generalization Bounds with Unbounded Losses

Shaojie Li, Bowei Zhu, Yong Liu

ICML 2024

A Statistical Theory of Regularization-Based Continual Learning

Xuyang Zhao, Huiyuan Wang, Weiran Huang et al.

ICML 2024arXiv:2406.06213
31
citations

Concentration Inequalities for General Functions of Heavy-Tailed Random Variables

Shaojie Li, Yong Liu

ICML 2024spotlight

FedNS: A Fast Sketching Newton-Type Algorithm for Federated Learning

Jian Li, Yong Liu, Wei Wang et al.

AAAI 2024paperarXiv:2401.02734
7
citations

On Statistical Learning Theory for Distributional Inputs

Christian Fiedler, Pierre-François Massiani, Friedrich Solowjow et al.

ICML 2024

On the Consistency of Kernel Methods with Dependent Observations

Pierre-François Massiani, Sebastian Trimpe, Friedrich Solowjow

ICML 2024arXiv:2406.06101
2
citations

Smoothness Adaptive Hypothesis Transfer Learning

Haotian Lin, Matthew Reimherr

ICML 2024arXiv:2402.14966
11
citations

Stability and Generalization of Stochastic Compositional Gradient Descent Algorithms

Ming Yang, Xiyuan Wei, Tianbao Yang et al.

ICML 2024arXiv:2307.03357
3
citations