Poster "stochastic differential equations" Papers

31 papers found

Adam Reduces a Unique Form of Sharpness: Theoretical Insights Near the Minimizer Manifold

Xinghan Li, Haodong Wen, Kaifeng Lyu

NEURIPS 2025arXiv:2511.02773
1
citations

Adaptive Methods through the Lens of SDEs: Theoretical Insights on the Role of Noise

Enea Monzio Compagnoni, Tianlin Liu, Rustem Islamov et al.

ICLR 2025arXiv:2411.15958
17
citations

Beyond Scores: Proximal Diffusion Models

Zhenghan Fang, Mateo Diaz, Sam Buchanan et al.

NEURIPS 2025arXiv:2507.08956
3
citations

Continuous Q-Score Matching: Diffusion Guided Reinforcement Learning for Continuous-Time Control

Chengxiu HUA, Jiawen Gu, Yushun Tang

NEURIPS 2025arXiv:2510.17122

Continuous-time Riemannian SGD and SVRG Flows on Wasserstein Probabilistic Space

Mingyang Yi, Bohan Wang

NEURIPS 2025arXiv:2401.13530

Cross-fluctuation phase transitions reveal sampling dynamics in diffusion models

Sai Niranjan Ramachandran, Manish Krishan Lal, Suvrit Sra

NEURIPS 2025arXiv:2511.00124
1
citations

Denoising Levy Probabilistic Models

Dario Shariatian, Umut Simsekli, Alain Oliviero Durmus

ICLR 2025

Improved Sampling Algorithms for Lévy-Itô Diffusion Models

Vadim Popov, Assel Yermekova, Tasnima Sadekova et al.

ICLR 2025

In-Context Learning of Stochastic Differential Equations with Foundation Inference Models

Patrick Seifner, Kostadin Cvejoski, David Berghaus et al.

NEURIPS 2025arXiv:2502.19049
5
citations

Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing

Jaihoon Kim, Taehoon Yoon, Jisung Hwang et al.

NEURIPS 2025arXiv:2503.19385
24
citations

MaRS: A Fast Sampler for Mean Reverting Diffusion based on ODE and SDE Solvers

Ao Li, Wei Fang, Hongbo Zhao et al.

ICLR 2025arXiv:2502.07856
5
citations

Parameter Dynamics of Online Machine Learning and Test-time Adaptation

Jae-Hong Lee

NEURIPS 2025

Semantic Image Inversion and Editing using Rectified Stochastic Differential Equations

Litu Rout, Yujia Chen, Nataniel Ruiz et al.

ICLR 2025arXiv:2410.10792
106
citations

Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes

Georg Manten, Cecilia Casolo, Emilio Ferrucci et al.

ICLR 2025arXiv:2402.18477
16
citations

Statistical Analysis of the Sinkhorn Iterations for Two-Sample Schr\"{o}dinger Bridge Estimation

Ibuki Maeda, Yao, Atsushi Nitanda

NEURIPS 2025

System-Embedded Diffusion Bridge Models

Bartlomiej Sobieski, Matthew Tivnan, Yuang Wang et al.

NEURIPS 2025arXiv:2506.23726
2
citations

TADA: Improved Diffusion Sampling with Training-free Augmented DynAmics

Tianrong Chen, Huangjie Zheng, David Berthelot et al.

NEURIPS 2025arXiv:2506.21757
1
citations

Uncertainty Modeling in Graph Neural Networks via Stochastic Differential Equations

Richard Bergna, Sergio Calvo Ordoñez, Felix Opolka et al.

ICLR 2025arXiv:2408.16115
8
citations

Bridging discrete and continuous state spaces: Exploring the Ehrenfest process in time-continuous diffusion models

Ludwig Winkler, Lorenz Richter, Manfred Opper

ICML 2024arXiv:2405.03549
6
citations

FESSNC: Fast Exponentially Stable and Safe Neural Controller

Jingdong Zhang, Luan Yang, Qunxi Zhu et al.

ICML 2024arXiv:2405.11406
2
citations

Generalization Bounds for Heavy-Tailed SDEs through the Fractional Fokker-Planck Equation

Benjamin Dupuis, Umut Simsekli

ICML 2024arXiv:2402.07723
6
citations

Image Restoration Through Generalized Ornstein-Uhlenbeck Bridge

Yue Conghan, Zhengwei Peng, Junlong Ma et al.

ICML 2024arXiv:2312.10299
41
citations

Implicit Compressibility of Overparametrized Neural Networks Trained with Heavy-Tailed SGD

Yijun Wan, Melih Barsbey, Abdellatif Zaidi et al.

ICML 2024arXiv:2306.08125
5
citations

Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient adaptive algorithms for neural networks

Dongyoung Lim, Sotirios Sabanis

ICML 2024arXiv:2105.13937
13
citations

Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes

Yifan Chen, Mark Goldstein, Mengjian Hua et al.

ICML 2024arXiv:2403.13724
42
citations

Probabilistic Time Series Modeling with Decomposable Denoising Diffusion Model

Tijin Yan, Hengheng Gong, Yongping He et al.

ICML 2024

Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference

JIAN XU, Delu Zeng, John Paisley

ICML 2024arXiv:2407.17033
13
citations

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

Xiangxin Zhou, Liang Wang, Yichi Zhou

ICML 2024arXiv:2403.04154
8
citations

TERD: A Unified Framework for Safeguarding Diffusion Models Against Backdoors

Yichuan Mo, Hui Huang, Mingjie Li et al.

ICML 2024arXiv:2409.05294
29
citations

Understanding Diffusion Models by Feynman's Path Integral

Yuji Hirono, Akinori Tanaka, Kenji Fukushima

ICML 2024arXiv:2403.11262
11
citations

Unifying Bayesian Flow Networks and Diffusion Models through Stochastic Differential Equations

Kaiwen Xue, Yuhao Zhou, Shen Nie et al.

ICML 2024arXiv:2404.15766
25
citations