"synthetic data training" Papers

12 papers found

Amodal3R: Amodal 3D Reconstruction from Occluded 2D Images

Tianhao Wu, Chuanxia Zheng, Frank Guan et al.

ICCV 2025arXiv:2503.13439
23
citations

CADCrafter: Generating Computer-Aided Design Models from Unconstrained Images

Chen Cheng, Jiacheng Wei, Tianrun Chen et al.

CVPR 2025arXiv:2504.04753
15
citations

Escaping Collapse: The Strength of Weak Data for Large Language Model Training

Kareem Amin, Sara Babakniya, Alex Bie et al.

NEURIPS 2025arXiv:2502.08924
11
citations

Multi-View 3D Point Tracking

Frano Rajič, Haofei Xu, Marko Mihajlovic et al.

ICCV 2025arXiv:2508.21060
4
citations

Self-Verification Provably Prevents Model Collapse in Recursive Synthetic Training

Shi Fu, Yingjie Wang, Yuzhu Chen et al.

NEURIPS 2025

DataDream: Few-shot Guided Dataset Generation

Jae Myung Kim, Jessica Bader, Stephan Alaniz et al.

ECCV 2024arXiv:2407.10910
23
citations

Dense Optical Tracking: Connecting the Dots

Guillaume Le Moing, Jean Ponce, Cordelia Schmid

CVPR 2024highlightarXiv:2312.00786
54
citations

Lost and Found: Overcoming Detector Failures in Online Multi-Object Tracking

Lorenzo Vaquero, Yihong XU, Xavier Alameda-Pineda et al.

ECCV 2024arXiv:2407.10151

Mind The Edge: Refining Depth Edges in Sparsely-Supervised Monocular Depth Estimation

Lior Talker, Aviad Cohen, Erez Yosef et al.

CVPR 2024arXiv:2212.05315
10
citations

Self-Correcting Self-Consuming Loops for Generative Model Training

Nate Gillman, Michael Freeman, Daksh Aggarwal et al.

ICML 2024arXiv:2402.07087
24
citations

Towards Theoretical Understandings of Self-Consuming Generative Models

Shi Fu, Sen Zhang, Yingjie Wang et al.

ICML 2024arXiv:2402.11778
22
citations

What needs to go right for an induction head? A mechanistic study of in-context learning circuits and their formation

Aaditya Singh, Ted Moskovitz, Feilx Hill et al.

ICML 2024spotlightarXiv:2404.07129
64
citations