"time series forecasting" Papers

47 papers found

Amplifier: Bringing Attention to Neglected Low-Energy Components in Time Series Forecasting

Jingru Fei, Kun Yi, Wei Fan et al.

AAAI 2025paperarXiv:2501.17216
13
citations

Auto-Regressive Moving Diffusion Models for Time Series Forecasting

Jiaxin Gao, Qinglong Cao, Yuntian Chen

AAAI 2025paperarXiv:2412.09328
8
citations

Can LLMs Understand Time Series Anomalies?

Zihao Zhou, Rose Yu

ICLR 2025arXiv:2410.05440
35
citations

Cherry-Picking in Time Series Forecasting: How to Select Datasets to Make Your Model Shine

Luis Roque, Vítor Cerqueira, Carlos Soares et al.

AAAI 2025paperarXiv:2412.14435
9
citations

CoMRes: Semi-Supervised Time Series Forecasting Utilizing Consensus Promotion of Multi-Resolution

Yunju Cho, Jay-Yoon Lee

ICLR 2025oral
1
citations

CUQDS: Conformal Uncertainty Quantification Under Distribution Shift for Trajectory Prediction

Huiqun Huang, Sihong He, Fei Miao

AAAI 2025paperarXiv:2406.12100
2
citations

DecompNet: Enhancing Time Series Forecasting Models with Implicit Decomposition

Donghao Luo, Xue Wang

NEURIPS 2025

Density estimation with LLMs: a geometric investigation of in-context learning trajectories

Toni Liu, Nicolas Boulle, Raphaël Sarfati et al.

ICLR 2025arXiv:2410.05218
4
citations

Enhancing Time Series Forecasting through Selective Representation Spaces: A Patch Perspective

Xingjian Wu, Xiangfei Qiu, Hanyin Cheng et al.

NEURIPS 2025arXiv:2510.14510
14
citations

Locally Connected Echo State Networks for Time Series Forecasting

Filip Matzner, František Mráz

ICLR 2025
1
citations

Multi-Modal View Enhanced Large Vision Models for Long-Term Time Series Forecasting

ChengAo Shen, Wenchao Yu, Ziming Zhao et al.

NEURIPS 2025arXiv:2505.24003
6
citations

Neural Conformal Control for Time Series Forecasting

Ruipu Li, Alexander Rodríguez

AAAI 2025paperarXiv:2412.18144
3
citations

Not All Data are Good Labels: On the Self-supervised Labeling for Time Series Forecasting

Yuxuan Yang, Dalin Zhang, Yuxuan Liang et al.

NEURIPS 2025spotlightarXiv:2502.14704
1
citations

OLinear: A Linear Model for Time Series Forecasting in Orthogonally Transformed Domain

Wenzhen Yue, Yong Liu, Hao Wang et al.

NEURIPS 2025oralarXiv:2505.08550
14
citations

PMLF: A Physics-Guided Multiscale Loss Framework for Structurally Heterogeneous Time Series

Xinghong Chen, Weilin Wu, Kunping Yang et al.

NEURIPS 2025oral

Selective Learning for Deep Time Series Forecasting

Yisong Fu, Zezhi Shao, Chengqing Yu et al.

NEURIPS 2025oralarXiv:2510.25207
2
citations

SEMPO: Lightweight Foundation Models for Time Series Forecasting

Hui He, Kun Yi, Yuanchi Ma et al.

NEURIPS 2025oralarXiv:2510.19710

Sequence Complementor: Complementing Transformers for Time Series Forecasting with Learnable Sequences

Xiwen Chen, Peijie Qiu, Wenhui Zhu et al.

AAAI 2025paperarXiv:2501.02735
2
citations

SynTSBench: Rethinking Temporal Pattern Learning in Deep Learning Models for Time Series

Qitai Tan, Yiyun Chen, Mo Li et al.

NEURIPS 2025oralarXiv:2510.20273

TARFVAE: Efficient One-Step Generative Time Series Forecasting via TARFLOW based VAE

Jiawen Wei, jiang lan, Pengbo Wei et al.

NEURIPS 2025arXiv:2511.22853

This Time is Different: An Observability Perspective on Time Series Foundation Models

Ben Cohen, Emaad Khwaja, Youssef Doubli et al.

NEURIPS 2025arXiv:2505.14766
13
citations

TimeEmb: A Lightweight Static-Dynamic Disentanglement Framework for Time Series Forecasting

Mingyuan Xia, Chunxu Zhang, Zijian Zhang et al.

NEURIPS 2025oralarXiv:2510.00461
3
citations

TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis

Shiyu Wang, Jiawei LI, Xiaoming Shi et al.

ICLR 2025oralarXiv:2410.16032
93
citations

Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts

Xiaoming Shi, Shiyu Wang, Yuqi Nie et al.

ICLR 2025arXiv:2409.16040
194
citations

Times2D: Multi-Period Decomposition and Derivative Mapping for General Time Series Forecasting

Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

AAAI 2025paperarXiv:2504.00118
3
citations

TiRex: Zero-Shot Forecasting Across Long and Short Horizons with Enhanced In-Context Learning

Andreas Auer, Patrick Podest, Daniel Klotz et al.

NEURIPS 2025arXiv:2505.23719
36
citations

True Zero-Shot Inference of Dynamical Systems Preserving Long-Term Statistics

Christoph Jürgen Hemmer, Daniel Durstewitz

NEURIPS 2025oralarXiv:2505.13192
8
citations

TS-RAG: Retrieval-Augmented Generation based Time Series Foundation Models are Stronger Zero-Shot Forecaster

Kanghui Ning, Zijie Pan, Yu Liu et al.

NEURIPS 2025arXiv:2503.07649
15
citations

WPMixer: Efficient Multi-Resolution Mixing for Long-Term Time Series Forecasting

Md Mahmuddun Nabi Murad, Mehmet Aktukmak, Yasin Yilmaz

AAAI 2025paperarXiv:2412.17176
24
citations

xPatch: Dual-Stream Time Series Forecasting with Exponential Seasonal-Trend Decomposition

Artyom Stitsyuk, Jaesik Choi

AAAI 2025paperarXiv:2412.17323
36
citations

$S^2$IP-LLM: Semantic Space Informed Prompt Learning with LLM for Time Series Forecasting

Zijie Pan, Yushan Jiang, Sahil Garg et al.

ICML 2024oralarXiv:2403.05798
17
citations

An Analysis of Linear Time Series Forecasting Models

William Toner, Luke Darlow

ICML 2024arXiv:2403.14587
47
citations

Considering Nonstationary within Multivariate Time Series with Variational Hierarchical Transformer for Forecasting

Muyao Wang, Wenchao Chen, Bo Chen

AAAI 2024paperarXiv:2403.05406
12
citations

Explain Temporal Black-Box Models via Functional Decomposition

Linxiao Yang, Yunze Tong, Xinyue Gu et al.

ICML 2024oral

GMP-AR: Granularity Message Passing and Adaptive Reconciliation for Temporal Hierarchy Forecasting

Fan Zhou, Chen Pan, Lintao Ma et al.

AAAI 2024paperarXiv:2406.12242
1
citations

Irregular Multivariate Time Series Forecasting: A Transformable Patching Graph Neural Networks Approach

Weijia Zhang, Chenlong Yin, Hao Liu et al.

ICML 2024oral

Loss Shaping Constraints for Long-Term Time Series Forecasting

Ignacio Hounie, Javier Porras-Valenzuela, Alejandro Ribeiro

ICML 2024arXiv:2402.09373
3
citations

Probabilistic Time Series Modeling with Decomposable Denoising Diffusion Model

Tijin Yan, Hengheng Gong, Yongping He et al.

ICML 2024

Reservoir Computing for Short High-Dimensional Time Series: an Application to SARS-CoV-2 Hospitalization Forecast

Thomas Ferté, Dutartre Dan, Boris Hejblum et al.

ICML 2024

Root Cause Analysis in Microservice Using Neural Granger Causal Discovery

Cheng-Ming Lin, Ching Chang, Wei-Yao Wang et al.

AAAI 2024paperarXiv:2402.01140
32
citations

SAMformer: Unlocking the Potential of Transformers in Time Series Forecasting with Sharpness-Aware Minimization and Channel-Wise Attention

Romain Ilbert, Ambroise Odonnat, Vasilii Feofanov et al.

ICML 2024arXiv:2402.10198
56
citations

SIN: Selective and Interpretable Normalization for Long-Term Time Series Forecasting

Lu Han, Han-Jia Ye, De-Chuan Zhan

ICML 2024

Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data

YongKyung Oh, Dongyoung Lim, Sungil Kim

ICLR 2024spotlightarXiv:2402.14989
40
citations

Timer: Generative Pre-trained Transformers Are Large Time Series Models

Yong Liu, Haoran Zhang, Chenyu Li et al.

ICML 2024arXiv:2402.02368
148
citations

TimesURL: Self-Supervised Contrastive Learning for Universal Time Series Representation Learning

jiexi Liu, Songcan Chen

AAAI 2024paperarXiv:2312.15709
105
citations

U-mixer: An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting

Xiang Ma, Xuemei Li, Lexin Fang et al.

AAAI 2024paperarXiv:2401.02236
38
citations

UP2ME: Univariate Pre-training to Multivariate Fine-tuning as a General-purpose Framework for Multivariate Time Series Analysis

Yunhao Zhang, Liu Minghao, Shengyang Zhou et al.

ICML 2024oral