"variance reduction" Papers

18 papers found

Accelerated Methods with Compressed Communications for Distributed Optimization Problems Under Data Similarity

Dmitry Bylinkin, Aleksandr Beznosikov

AAAI 2025paperarXiv:2412.16414
3
citations

Better Estimation of the Kullback--Leibler Divergence Between Language Models

Afra Amini, Tim Vieira, Ryan Cotterell

NEURIPS 2025arXiv:2504.10637
4
citations

Doubly Optimal Policy Evaluation for Reinforcement Learning

Shuze Liu, Claire Chen, Shangtong Zhang

ICLR 2025arXiv:2410.02226
5
citations

Efficient Multi-Policy Evaluation for Reinforcement Learning

Shuze Daniel Liu, Claire Chen, Shangtong Zhang

AAAI 2025paperarXiv:2408.08706
2
citations

Efficient Policy Evaluation with Safety Constraint for Reinforcement Learning

Claire Chen, Shuze Liu, Shangtong Zhang

ICLR 2025arXiv:2410.05655
1
citations

Minimal Variance Model Aggregation: A principled, non-intrusive, and versatile integration of black box models

Theo Bourdais, Houman Owhadi

ICLR 2025arXiv:2409.17267
2
citations

On the Convergence of Stochastic Smoothed Multi-Level Compositional Gradient Descent Ascent

Xinwen Zhang, Hongchang Gao

NEURIPS 2025

PseuZO: Pseudo-Zeroth-Order Algorithm for Training Deep Neural Networks

Pengyun Yue, Xuanlin Yang, Mingqing Xiao et al.

NEURIPS 2025

Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold

Hoang Phuc Hau Luu, Hanlin Yu, Bernardo Williams et al.

ICLR 2025arXiv:2410.02490
1
citations

Zeroth-Order Methods for Nonconvex Stochastic Problems with Decision-Dependent Distributions

Yuya Hikima, Akiko Takeda

AAAI 2025paperarXiv:2412.20330
3
citations

Averaging $n$-step Returns Reduces Variance in Reinforcement Learning

Brett Daley, Martha White, Marlos C. Machado

ICML 2024oralarXiv:2402.03903
5
citations

Efficient Algorithms for Empirical Group Distributionally Robust Optimization and Beyond

Dingzhi Yu, Yunuo Cai, Wei Jiang et al.

ICML 2024arXiv:2403.03562
7
citations

Efficient Policy Evaluation with Offline Data Informed Behavior Policy Design

Shuze Liu, Shangtong Zhang

ICML 2024arXiv:2301.13734
7
citations

Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction

Undral Byambadalai, Tatsushi Oka, Shota Yasui

ICML 2024arXiv:2407.16037
6
citations

Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games

Songtao Feng, Ming Yin, Yu-Xiang Wang et al.

ICML 2024arXiv:2308.08858
2
citations

Non-convex Stochastic Composite Optimization with Polyak Momentum

Yuan Gao, Anton Rodomanov, Sebastian Stich

ICML 2024arXiv:2403.02967
13
citations

SILVER: Single-loop variance reduction and application to federated learning

Kazusato Oko, Shunta Akiyama, Denny Wu et al.

ICML 2024

Trust Region Methods for Nonconvex Stochastic Optimization beyond Lipschitz Smoothness

Chenghan Xie, Chenxi Li, Chuwen Zhang et al.

AAAI 2024paperarXiv:2310.17319
14
citations