"wasserstein distance" Papers

22 papers found

Assessing the quality of denoising diffusion models in Wasserstein distance: noisy score and optimal bounds

Vahan Arsenyan, Elen Vardanyan, Arnak Dalalyan

NEURIPS 2025arXiv:2506.09681

Bootstrap Your Uncertainty: Adaptive Robust Classification Driven by Optimal-Transport

Jiawei Huang, Minming Li, Hu Ding

NEURIPS 2025

Can a MISL Fly? Analysis and Ingredients for Mutual Information Skill Learning

Chongyi Zheng, Jens Tuyls, Joanne Peng et al.

ICLR 2025arXiv:2412.08021
9
citations

Flow matching achieves almost minimax optimal convergence

Kenji Fukumizu, Taiji Suzuki, Noboru Isobe et al.

ICLR 2025arXiv:2405.20879
13
citations

Non-convex entropic mean-field optimization via Best Response flow

Razvan-Andrei Lascu, Mateusz Majka

NEURIPS 2025arXiv:2505.22760
1
citations

Pareto Optimal Risk-Agnostic Distributional Bandits with Heavy-Tail Rewards

Kyungjae Lee, Dohyeong Kim, Taehyun Cho et al.

NEURIPS 2025

Self-Evolving Pseudo-Rehearsal for Catastrophic Forgetting with Task Similarity in LLMs

Jun Wang, Liang Ding, Shuai Wang et al.

NEURIPS 2025

Towards Self-Supervised Covariance Estimation in Deep Heteroscedastic Regression

Megh Shukla, Aziz Shameem, Mathieu Salzmann et al.

ICLR 2025arXiv:2502.10587
3
citations

Universal generalization guarantees for Wasserstein distributionally robust models

Tam Le, Jerome Malick

ICLR 2025arXiv:2402.11981
7
citations

Wasserstein-Regularized Conformal Prediction under General Distribution Shift

Rui Xu, Chao Chen, Yue Sun et al.

ICLR 2025arXiv:2501.13430
5
citations

ACT-Diffusion: Efficient Adversarial Consistency Training for One-step Diffusion Models

Fei Kong, Jinhao Duan, Lichao Sun et al.

CVPR 2024arXiv:2311.14097
5
citations

A New Robust Partial p-Wasserstein-Based Metric for Comparing Distributions

Sharath Raghvendra, Pouyan Shirzadian, Kaiyi Zhang

ICML 2024arXiv:2405.03664
9
citations

Hierarchical Integral Probability Metrics: A distance on random probability measures with low sample complexity

Marta Catalano, Hugo Lavenant

ICML 2024arXiv:2402.00423
5
citations

MC-GTA: Metric-Constrained Model-Based Clustering using Goodness-of-fit Tests with Autocorrelations

Zhangyu Wang, Gengchen Mai, Krzysztof Janowicz et al.

ICML 2024oralarXiv:2405.18395
3
citations

Optimal Transport for Structure Learning Under Missing Data

Vy Vo, He Zhao, Trung Le et al.

ICML 2024arXiv:2402.15255
6
citations

Sample Complexity Bounds for Estimating Probability Divergences under Invariances

Behrooz Tahmasebi, Stefanie Jegelka

ICML 2024arXiv:2311.02868
11
citations

Sampling is as easy as keeping the consistency: convergence guarantee for Consistency Models

Junlong Lyu, Zhitang Chen, Shoubo Feng

ICML 2024

Scalar Function Topology Divergence: Comparing Topology of 3D Objects

Ilya Trofimov, Daria Voronkova, Eduard Tulchinskii et al.

ECCV 2024arXiv:2407.08364

Second-Order Uncertainty Quantification: A Distance-Based Approach

Yusuf Sale, Viktor Bengs, Michele Caprio et al.

ICML 2024spotlightarXiv:2312.00995
33
citations

Standardized Interpretable Fairness Measures for Continuous Risk Scores

Ann-Kristin Becker, Oana Dumitrasc, Klaus Broelemann

ICML 2024arXiv:2308.11375
4
citations

Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution

Elen Vardanyan, Sona Hunanyan, Tigran Galstyan et al.

ICML 2024arXiv:2307.16422
2
citations

Theory of Consistency Diffusion Models: Distribution Estimation Meets Fast Sampling

Zehao Dou, Minshuo Chen, Mengdi Wang et al.

ICML 2024