In-Context Policy Adaptation via Cross-Domain Skill Diffusion

3
citations
#1222
in AAAI 2025
of 3028 papers
3
Top Authors
4
Data Points

Abstract

In this work, we present an in-context policy adaptation (ICPAD) framework designed for long-horizon multi-task environments, exploring diffusion-based skill learning techniques in cross-domain settings. The framework enables rapid adaptation of skill-based reinforcement learning policies to diverse target domains, especially under stringent constraints on no model updates and only limited target domain data. Specifically, the framework employs a cross-domain skill diffusion scheme, where domain-agnostic prototype skills and a domain-grounded skill adapter are learned jointly and effectively from an offline dataset through cross-domain consistent diffusion processes. The prototype skills act as primitives for common behavior representations of long-horizon policies, serving as a lingua franca to bridge different domains. Furthermore, to enhance the in-context adaptation performance, we develop a dynamic domain prompting scheme that guides the diffusion-based skill adapter toward better alignment with the target domain. Through experiments with robotic manipulation in Metaworld and autonomous driving in CARLA, we show that our $\oursol$ framework achieves superior policy adaptation performance under limited target domain data conditions for various cross-domain configurations including differences in environment dynamics, agent embodiment, and task horizon.

Citation History

Jan 28, 2026
3
Feb 13, 2026
3
Feb 13, 2026
3
Feb 13, 2026
3