Bootstrapping Autonomous Driving Radars with Self-Supervised Learning

14citations
arXiv:2312.04519
14
citations
#1558
in CVPR 2024
of 2716 papers
6
Top Authors
4
Data Points

Abstract

The perception of autonomous vehicles using radars has attracted increased research interest due its ability to operate in fog and bad weather. However, training radar models is hindered by the cost and difficulty of annotating large-scale radar data. To overcome this bottleneck, we propose a self-supervised learning framework to leverage the large amount of unlabeled radar data to pre-train radar-only embeddings for self-driving perception tasks. The proposed method combines radar-to-radar and radar-to-vision contrastive losses to learn a general representation from unlabeled radar heatmaps paired with their corresponding camera images. When used for downstream object detection, we demonstrate that the proposed self-supervision framework can improve the accuracy of state-of-the-art supervised baselines by $5.8\%$ in mAP. Code is available at \url{https://github.com/yiduohao/Radical}.

Citation History

Jan 28, 2026
0
Feb 13, 2026
14+14
Feb 13, 2026
14
Feb 13, 2026
14