Poster "graph neural networks" Papers

208 papers found • Page 4 of 5

GNNs Also Deserve Editing, and They Need It More Than Once

Shaochen (Henry) Zhong, Duy Le, Zirui Liu et al.

ICML 2024

Graph2Tac: Online Representation Learning of Formal Math Concepts

Lasse Blaauwbroek, Mirek Olšák, Jason Rute et al.

ICML 2024arXiv:2401.02949
15
citations

Graph As Point Set

Xiyuan Wang, Pan Li, Muhan Zhang

ICML 2024arXiv:2405.02795
4
citations

Graph Distillation with Eigenbasis Matching

Yang Liu, Deyu Bo, Chuan Shi

ICML 2024arXiv:2310.09202
15
citations

Graph External Attention Enhanced Transformer

Jianqing Liang, Min Chen, Jiye Liang

ICML 2024arXiv:2405.21061
9
citations

Graph Mixup on Approximate Gromov–Wasserstein Geodesics

Zhichen Zeng, Ruizhong Qiu, Zhe Xu et al.

ICML 2024

Graph Neural Network Causal Explanation via Neural Causal Models

Arman Behnam, Binghui Wang

ECCV 2024arXiv:2407.09378
10
citations

Graph Neural Network Explanations are Fragile

Jiate Li, Meng Pang, Yun Dong et al.

ICML 2024arXiv:2406.03193
18
citations

Graph Neural Networks Use Graphs When They Shouldn't

Maya Bechler-Speicher, Ido Amos, Ran Gilad-Bachrach et al.

ICML 2024arXiv:2309.04332
27
citations

Graph Neural Networks with a Distribution of Parametrized Graphs

See Hian Lee, Feng Ji, Kelin Xia et al.

ICML 2024arXiv:2310.16401
1
citations

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Masanobu Horie, NAOTO MITSUME

ICML 2024arXiv:2405.16183
15
citations

Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Xixun Lin, Wenxiao Zhang, Fengzhao Shi et al.

ICML 2024

Graph Positional and Structural Encoder

Semih Cantürk, Renming Liu, Olivier Lapointe-Gagné et al.

ICML 2024arXiv:2307.07107
30
citations

Homomorphism Counts for Graph Neural Networks: All About That Basis

Emily Jin, Michael Bronstein, Ismail Ceylan et al.

ICML 2024arXiv:2402.08595
20
citations

How Graph Neural Networks Learn: Lessons from Training Dynamics

Chenxiao Yang, Qitian Wu, David Wipf et al.

ICML 2024arXiv:2310.05105
2
citations

Hypergraph-enhanced Dual Semi-supervised Graph Classification

Wei Ju, Zhengyang Mao, Siyu Yi et al.

ICML 2024arXiv:2405.04773
38
citations

Learning Divergence Fields for Shift-Robust Graph Representations

Qitian Wu, Fan Nie, Chenxiao Yang et al.

ICML 2024arXiv:2406.04963
2
citations

Learning Graph Representation via Graph Entropy Maximization

Ziheng Sun, Xudong Wang, Chris Ding et al.

ICML 2024

LLaGA: Large Language and Graph Assistant

Runjin Chen, Tong Zhao, Ajay Jaiswal et al.

ICML 2024arXiv:2402.08170
148
citations

MAGNOLIA: Matching Algorithms via GNNs for Online Value-to-go Approximation

Alexandre Hayderi, Amin Saberi, Ellen Vitercik et al.

ICML 2024arXiv:2406.05959
3
citations

Mitigating Label Noise on Graphs via Topological Sample Selection

Yuhao Wu, Jiangchao Yao, Xiaobo Xia et al.

ICML 2024arXiv:2403.01942
7
citations

Mitigating Oversmoothing Through Reverse Process of GNNs for Heterophilic Graphs

MoonJeong Park, Jaeseung Heo, Dongwoo Kim

ICML 2024arXiv:2403.10543
6
citations

Modelling Microbial Communities with Graph Neural Networks

Albane Ruaud, Cansu Sancaktar, Marco Bagatella et al.

ICML 2024

Navigating Complexity: Toward Lossless Graph Condensation via Expanding Window Matching

Yuchen Zhang, Tianle Zhang, Kai Wang et al.

ICML 2024arXiv:2402.05011
35
citations

Networked Inequality: Preferential Attachment Bias in Graph Neural Network Link Prediction

Arjun Subramonian, Levent Sagun, Yizhou Sun

ICML 2024arXiv:2309.17417
7
citations

Neural Sign Actors: A Diffusion Model for 3D Sign Language Production from Text

Vasileios Baltatzis, Rolandos Alexandros Potamias, Evangelos Ververas et al.

CVPR 2024arXiv:2312.02702
45
citations

Neural SPH: Improved Neural Modeling of Lagrangian Fluid Dynamics

Artur Toshev, Jonas Erbesdobler, Nikolaus Adams et al.

ICML 2024arXiv:2402.06275
9
citations

Neural Tangent Kernels Motivate Cross-Covariance Graphs in Neural Networks

Shervin Khalafi, Saurabh Sihag, Alejandro Ribeiro

ICML 2024

On dimensionality of feature vectors in MPNNs

César Bravo, Alexander Kozachinskiy, Cristobal Rojas

ICML 2024arXiv:2402.03966
8
citations

On the Expressive Power of Spectral Invariant Graph Neural Networks

Bohang Zhang, Lingxiao Zhao, Haggai Maron

ICML 2024arXiv:2406.04336
18
citations

On the Generalization of Equivariant Graph Neural Networks

Rafał Karczewski, Amauri Souza, Vikas Garg

ICML 2024

On Which Nodes Does GCN Fail? Enhancing GCN From the Node Perspective

Jincheng Huang, Jialie SHEN, Xiaoshuang Shi et al.

ICML 2024

Open Ad Hoc Teamwork with Cooperative Game Theory

Jianhong Wang, Yang Li, Yuan Zhang et al.

ICML 2024arXiv:2402.15259
5
citations

PAC-Bayesian Generalization Bounds for Knowledge Graph Representation Learning

Jaejun Lee, Minsung Hwang, Joyce Whang

ICML 2024arXiv:2405.06418
2
citations

PANDA: Expanded Width-Aware Message Passing Beyond Rewiring

Jeongwhan Choi, Sumin Parksumin, Hyowon Wi et al.

ICML 2024arXiv:2406.03671
12
citations

PGODE: Towards High-quality System Dynamics Modeling

Xiao Luo, Yiyang Gu, Huiyu Jiang et al.

ICML 2024arXiv:2311.06554
8
citations

PhAST: Physics-Aware, Scalable, and Task-Specific GNNs for Accelerated Catalyst Design

Alexandre Duval, Victor Schmidt, Santiago Miret et al.

ICML 2024arXiv:2211.12020
9
citations

POET: Prompt Offset Tuning for Continual Human Action Adaptation

Prachi Garg, Joseph K J, Vineeth N Balasubramanian et al.

ECCV 2024arXiv:2504.18059
1
citations

Position: Future Directions in the Theory of Graph Machine Learning

Christopher Morris, Fabrizio Frasca, Nadav Dym et al.

ICML 2024

Predicting and Interpreting Energy Barriers of Metallic Glasses with Graph Neural Networks

Haoyu Li, Shichang Zhang, Longwen Tang et al.

ICML 2024arXiv:2401.08627
2
citations

Predicting Lagrangian Multipliers for Mixed Integer Linear Programs

Francesco Demelas, Joseph Roux, Mathieu Lacroix et al.

ICML 2024

Quantum Positional Encodings for Graph Neural Networks

Slimane Thabet, Mehdi Djellabi, Igor Sokolov et al.

ICML 2024arXiv:2406.06547
10
citations

Rethinking Independent Cross-Entropy Loss For Graph-Structured Data

Rui Miao, Kaixiong Zhou, Yili Wang et al.

ICML 2024arXiv:2405.15564
5
citations

Rethinking Label Poisoning for GNNs: Pitfalls and Attacks

Vijay Chandra Lingam, Mohammad Sadegh Akhondzadeh, Aleksandar Bojchevski

ICLR 2024
8
citations

Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs

Langzhang Liang, Sunwoo Kim, Kijung Shin et al.

ICML 2024arXiv:2405.20652
13
citations

Structure Your Data: Towards Semantic Graph Counterfactuals

Angeliki Dimitriou, Maria Lymperaiou, Giorgos Filandrianos et al.

ICML 2024arXiv:2403.06514
6
citations

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Guy Bar Shalom, Beatrice Bevilacqua, Haggai Maron

ICML 2024arXiv:2402.08450
11
citations

Subhomogeneous Deep Equilibrium Models

Pietro Sittoni, Francesco Tudisco

ICML 2024arXiv:2403.00720
3
citations

The Expressive Power of Path-Based Graph Neural Networks

Caterina Graziani, Tamara Drucks, Fabian Jogl et al.

ICML 2024

The Merit of River Network Topology for Neural Flood Forecasting

Nikolas Kirschstein, Yixuan Sun

ICML 2024arXiv:2405.19836
4
citations