All Papers

34,598 papers found • Page 677 of 692

Unbiased Multi-Label Learning from Crowdsourced Annotations

Mingxuan Xia, Zenan Huang, Runze Wu et al.

ICML 2024

Unbiased Watermark for Large Language Models

Zhengmian Hu, Lichang Chen, Xidong Wu et al.

ICLR 2024spotlightarXiv:2310.10669
93
citations

Uncertainty-aware Action Decoupling Transformer for Action Anticipation

Hongji Guo, Nakul Agarwal, Shao-Yuan Lo et al.

CVPR 2024highlight

Uncertainty-aware Constraint Inference in Inverse Constrained Reinforcement Learning

Sheng Xu, Guiliang Liu

ICLR 2024

Uncertainty-Aware GAN for Single Image Super Resolution

AAAI 2024paper

Uncertainty-aware Graph-based Hyperspectral Image Classification

Linlin Yu, Yifei Lou, Feng Chen

ICLR 2024
8
citations

Uncertainty-Aware Reward-Free Exploration with General Function Approximation

Junkai Zhang, Weitong Zhang, Dongruo Zhou et al.

ICML 2024arXiv:2406.16255
5
citations

Uncertainty-aware sign language video retrieval with probability distribution modeling

Xuan Wu, Hongxiang Li, yuanjiang luo et al.

ECCV 2024arXiv:2405.19689
10
citations

Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer

Yuang Ai, Xiaoqiang Zhou, Huaibo Huang et al.

CVPR 2024arXiv:2303.17783
9
citations

Uncertainty-Aware Yield Prediction with Multimodal Molecular Features

Jiayuan Chen, Kehan Guo, Zhen Liu et al.

AAAI 2024paper

Uncertainty Calibration with Energy Based Instance-wise Scaling in the Wild Dataset

Mijoo Kim, Junseok Kwon

ECCV 2024arXiv:2407.12330
3
citations

Uncertainty-Driven Spectral Compressive Imaging with Spatial-Frequency Transformer

Lintao Peng, Siyu Xie, Liheng Bian

ECCV 2024

Uncertainty Estimation by Density Aware Evidential Deep Learning

Taeseong Yoon, Heeyoung Kim

ICML 2024arXiv:2409.08754
10
citations

Uncertainty for Active Learning on Graphs

Dominik Fuchsgruber, Tom Wollschläger, Bertrand Charpentier et al.

ICML 2024arXiv:2405.01462
17
citations

Uncertainty-Guided Never-Ending Learning to Drive

Lei Lai, Eshed Ohn-Bar, Sanjay Arora et al.

CVPR 2024

Uncertainty Quantification for Data-Driven Change-Point Learning via Cross-Validation

AAAI 2024paperarXiv:2312.11319
2
citations

Uncertainty Quantification for Forward and Inverse Problems of PDEs via Latent Global Evolution

Tailin Wu, Willie Neiswanger, Hongtao Zheng et al.

AAAI 2024paperarXiv:2402.08383
8
citations

Uncertainty Quantification in Heterogeneous Treatment Effect Estimation with Gaussian-Process-Based Partially Linear Model

Shunsuke Horii, Yoichi Chikahara

AAAI 2024paperarXiv:2312.10435
6
citations

Uncertainty Quantification via Stable Distribution Propagation

Felix Petersen, Aashwin Mishra, Hilde Kuehne et al.

ICLR 2024arXiv:2402.08324
9
citations

Uncertainty Regularized Evidential Regression

Kai Ye, Tiejin Chen, Hua Wei et al.

AAAI 2024paperarXiv:2401.01484
11
citations

Uncertainty Visualization via Low-Dimensional Posterior Projections

Omer Yair, Tomer Michaeli, Elias Nehme

CVPR 2024arXiv:2312.07804
3
citations

Unconstrained Stochastic CCA: Unifying Multiview and Self-Supervised Learning

James Chapman, Lennie Wells, Ana Lawry Aguila

ICLR 2024arXiv:2310.01012
2
citations

Uncovering and Mitigating the Hidden Chasm: A Study on the Text-Text Domain Gap in Euphemism Identification

AAAI 2024paper

Uncovering What Why and How: A Comprehensive Benchmark for Causation Understanding of Video Anomaly

Hang Du, Sicheng Zhang, Binzhu Xie et al.

CVPR 2024arXiv:2405.00181
44
citations

Underspecification in Language Modeling Tasks: A Causality-Informed Study of Gendered Pronoun Resolution

Emily McMilin

AAAI 2024paperarXiv:2210.00131

Understanding Adam Optimizer via Online Learning of Updates: Adam is FTRL in Disguise

Kwangjun Ahn, Zhiyu Zhang, Yunbum Kook et al.

ICML 2024arXiv:2402.01567
22
citations

Understanding Addition in Transformers

Philip Quirke, Fazl Barez

ICLR 2024arXiv:2310.13121
30
citations

Understanding and Diagnosing Deep Reinforcement Learning

Ezgi Korkmaz

ICML 2024arXiv:2406.16979
7
citations

Understanding and Improving Optimization in Predictive Coding Networks

Nicholas Alonso, Jeffrey Krichmar, Emre Neftci

AAAI 2024paperarXiv:2305.13562
12
citations

Understanding and Improving Source-free Domain Adaptation from a Theoretical Perspective

Yu Mitsuzumi, Akisato Kimura, Hisashi Kashima

CVPR 2024

Understanding and Leveraging the Learning Phases of Neural Networks

AAAI 2024paperarXiv:2312.06887
5
citations

Understanding and Mitigating Human-Labelling Errors in Supervised Contrastive Learning

Zijun Long, Lipeng Zhuang, George W Killick et al.

ECCV 2024arXiv:2403.06289
1
citations

Understanding and Mitigating the Label Noise in Pre-training on Downstream Tasks

Hao Chen, Jindong Wang, Ankit Parag Shah et al.

ICLR 2024spotlightarXiv:2309.17002
46
citations

Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation and Regression

Runtian Zhai, Bingbin Liu, Andrej Risteski et al.

ICLR 2024spotlightarXiv:2306.00788
18
citations

Understanding Catastrophic Forgetting in Language Models via Implicit Inference

Suhas Kotha, Jacob Springer, Aditi Raghunathan

ICLR 2024arXiv:2309.10105
114
citations

Understanding Certified Training with Interval Bound Propagation

Yuhao Mao, Mark N Müller, Marc Fischer et al.

ICLR 2024arXiv:2306.10426
23
citations

Understanding Convergence and Generalization in Federated Learning through Feature Learning Theory

Wei Huang, Ye Shi, Zhongyi Cai et al.

ICLR 2024

Understanding Diffusion Models by Feynman's Path Integral

Yuji Hirono, Akinori Tanaka, Kenji Fukushima

ICML 2024arXiv:2403.11262
11
citations

Understanding Distributed Representations of Concepts in Deep Neural Networks without Supervision

Wonjoon Chang, Dahee Kwon, Jaesik Choi

AAAI 2024paperarXiv:2312.17285
2
citations

Understanding Domain Generalization: A Noise Robustness Perspective

Rui Qiao, Bryan Kian Hsiang Low

ICLR 2024arXiv:2401.14846
8
citations

Understanding Expressivity of GNN in Rule Learning

Haiquan Qiu, Yongqi Zhang, Yong Li et al.

ICLR 2024arXiv:2303.12306
9
citations

Understanding Finetuning for Factual Knowledge Extraction

Gaurav Ghosal, Tatsunori Hashimoto, Aditi Raghunathan

ICML 2024arXiv:2406.14785
28
citations

Understanding Forgetting in Continual Learning with Linear Regression

Meng Ding, Kaiyi Ji, Di Wang et al.

ICML 2024arXiv:2405.17583
18
citations

Understanding Heterophily for Graph Neural Networks

Junfu Wang, Yuanfang Guo, Liang Yang et al.

ICML 2024arXiv:2401.09125
18
citations

Understanding In-Context Learning from Repetitions

Jianhao (Elliott) Yan, Jin Xu, Chiyu Song et al.

ICLR 2024arXiv:2310.00297
30
citations

Understanding In-Context Learning in Transformers and LLMs by Learning to Learn Discrete Functions

Satwik Bhattamishra, Arkil Patel, Phil Blunsom et al.

ICLR 2024arXiv:2310.03016
75
citations

Understanding Inter-Concept Relationships in Concept-Based Models

Naveen Raman, Mateo Espinosa Zarlenga, Mateja Jamnik

ICML 2024arXiv:2405.18217
10
citations

Understanding MLP-Mixer as a wide and sparse MLP

Tomohiro Hayase, Ryo Karakida

ICML 2024arXiv:2306.01470
8
citations

Understanding Multi-compositional learning in Vision and Language models via Category Theory

Sotirios Panagiotis Takis Chytas, Hyunwoo J. Kim, Vikas Singh

ECCV 2024
5
citations

Understanding Physical Dynamics with Counterfactual World Modeling

Rahul Mysore Venkatesh, Honglin Chen, Kevin Feigelis et al.

ECCV 2024arXiv:2312.06721
7
citations