"distribution shift" Papers

61 papers found • Page 1 of 2

Adaptive Neighborhood-Constrained Q Learning for Offline Reinforcement Learning

Yixiu Mao, Yun Qu, Qi Wang et al.

NEURIPS 2025spotlightarXiv:2511.02567

AdaWM: Adaptive World Model based Planning for Autonomous Driving

Hang Wang, Xin Ye, Feng Tao et al.

ICLR 2025arXiv:2501.13072
14
citations

ADPretrain: Advancing Industrial Anomaly Detection via Anomaly Representation Pretraining

Xincheng Yao, Yan Luo, Zefeng Qian et al.

NEURIPS 2025arXiv:2511.05245
2
citations

A Layer Selection Approach to Test Time Adaptation

Sabyasachi Sahoo, Mostafa ElAraby, Jonas Ngnawe et al.

AAAI 2025paperarXiv:2404.03784
3
citations

Balanced Direction from Multifarious Choices: Arithmetic Meta-Learning for Domain Generalization

Xiran Wang, Jian Zhang, Lei Qi et al.

CVPR 2025arXiv:2503.18987
4
citations

Bayesian Test-Time Adaptation for Vision-Language Models

Lihua Zhou, Mao Ye, Shuaifeng Li et al.

CVPR 2025arXiv:2503.09248
11
citations

Boosting Test Performance with Importance Sampling--a Subpopulation Perspective

Hongyu Shen, Zhizhen Zhao

AAAI 2025paperarXiv:2412.13003

Bridging the Gap for Test-Time Multimodal Sentiment Analysis

Zirun Guo, Tao Jin, Wenlong Xu et al.

AAAI 2025paperarXiv:2412.07121
11
citations

CARL: Causality-guided Architecture Representation Learning for an Interpretable Performance Predictor

Han Ji, Yuqi Feng, Jiahao Fan et al.

ICCV 2025arXiv:2506.04001

Conformal Prediction in The Loop: A Feedback-Based Uncertainty Model for Trajectory Optimization

Han Wang, Chao Ning

NEURIPS 2025arXiv:2510.16376

CUQDS: Conformal Uncertainty Quantification Under Distribution Shift for Trajectory Prediction

Huiqun Huang, Sihong He, Fei Miao

AAAI 2025paperarXiv:2406.12100
2
citations

Deep Kernel Relative Test for Machine-generated Text Detection

Yiliao Song, Zhenqiao Yuan, Shuhai Zhang et al.

ICLR 2025
11
citations

Early Concept Drift Detection via Prediction Uncertainty

Pengqian Lu, Jie Lu, Anjin Liu et al.

AAAI 2025paperarXiv:2412.11158
10
citations

Epistemic Uncertainty for Generated Image Detection

Jun Nie, Yonggang Zhang, Tongliang Liu et al.

NEURIPS 2025arXiv:2412.05897
1
citations

Error-quantified Conformal Inference for Time Series

Junxi Wu, Dongjian Hu, Yajie Bao et al.

ICLR 2025oralarXiv:2502.00818
8
citations

Filter or Compensate: Towards Invariant Representation from Distribution Shift for Anomaly Detection

Zining Chen, Xingshuang Luo, Weiqiu Wang et al.

AAAI 2025paperarXiv:2412.10115
8
citations

Geometry of Long-Tailed Representation Learning: Rebalancing Features for Skewed Distributions

Lingjie Yi, Michael Yao, Weimin Lyu et al.

ICLR 2025
2
citations

High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws

Muhammed Ildiz, Halil Gozeten, Ege Taga et al.

ICLR 2025arXiv:2410.18837
13
citations

Keep It on a Leash: Controllable Pseudo-label Generation Towards Realistic Long-Tailed Semi-Supervised Learning

Yaxin Hou, Bo Han, Yuheng Jia et al.

NEURIPS 2025arXiv:2510.03993

Knowledge Distillation of Uncertainty using Deep Latent Factor Model

Sehyun Park, Jongjin Lee, Yunseop Shin et al.

NEURIPS 2025arXiv:2510.19290

Learning Neural Networks with Distribution Shift: Efficiently Certifiable Guarantees

Gautam Chandrasekaran, Adam Klivans, Lin Lin Lee et al.

ICLR 2025arXiv:2502.16021
1
citations

Learning Robust Spectral Dynamics for Temporal Domain Generalization

En Yu, Jie Lu, Xiaoyu Yang et al.

NEURIPS 2025oralarXiv:2505.12585
11
citations

Meta-D2AG: Causal Graph Learning with Interventional Dynamic Data

Tian Gao, Songtao Lu, Junkyu Lee et al.

NEURIPS 2025oral

MetaOOD: Automatic Selection of OOD Detection Models

Yuehan Qin, Yichi Zhang, Yi Nian et al.

ICLR 2025arXiv:2410.03074
16
citations

Minimax Optimal Two-Stage Algorithm For Moment Estimation Under Covariate Shift

Zhen Zhang, Xin Liu, Shaoli Wang et al.

ICLR 2025arXiv:2506.23453
1
citations

Mixture of Online and Offline Experts for Non-Stationary Time Series

Zhilin Zhao, Longbing Cao, Yuanyu Wan

AAAI 2025paperarXiv:2202.05996

Noisy Test-Time Adaptation in Vision-Language Models

Chentao Cao, Zhun Zhong, (Andrew) Zhanke Zhou et al.

ICLR 2025arXiv:2502.14604
4
citations

Optimizing importance weighting in the presence of sub-population shifts

Floris Holstege, Bram Wouters, Noud Giersbergen et al.

ICLR 2025arXiv:2410.14315
2
citations

Processing and acquisition traces in visual encoders: What does CLIP know about your camera?

Ryan Ramos, Vladan Stojnić, Giorgos Kordopatis-Zilos et al.

ICCV 2025highlightarXiv:2508.10637

Progressive Test Time Energy Adaptation for Medical Image Segmentation

Xiaoran Zhang, Byung-Woo Hong, Hyoungseob Park et al.

ICCV 2025highlightarXiv:2503.16616
3
citations

RTDiff: Reverse Trajectory Synthesis via Diffusion for Offline Reinforcement Learning

Qianlan Yang, Yu-Xiong Wang

ICLR 2025

Synchronizing Task Behavior: Aligning Multiple Tasks during Test-Time Training

Wooseong Jeong, Jegyeong Cho, Youngho Yoon et al.

ICCV 2025arXiv:2507.07778
1
citations

Test-Time Ensemble via Linear Mode Connectivity: A Path to Better Adaptation

Byungjai Kim, Chanho Ahn, Wissam Baddar et al.

ICLR 2025
3
citations

Wasserstein-Regularized Conformal Prediction under General Distribution Shift

Rui Xu, Chao Chen, Yue Sun et al.

ICLR 2025arXiv:2501.13430
5
citations

A Noisy Elephant in the Room: Is Your Out-of-Distribution Detector Robust to Label Noise?

Galadrielle Humblot-Renaux, Sergio Escalera, Thomas B. Moeslund

CVPR 2024arXiv:2404.01775
15
citations

Conformal Risk Control

Anastasios Angelopoulos, Stephen Bates, Adam Fisch et al.

ICLR 2024spotlightarXiv:2208.02814
203
citations

Cross-domain Open-world Discovery

Shuo Wen, Maria Brbic

ICML 2024arXiv:2406.11422
7
citations

Distributionally Robust Loss for Long-Tailed Multi-Label Image Classification

Dekun Lin, Zhe Cui, Rui Chen et al.

ECCV 2024
10
citations

Domain-wise Data Acquisition to Improve Performance under Distribution Shift

Yue He, Dongbai Li, Pengfei Tian et al.

ICML 2024

Elijah: Eliminating Backdoors Injected in Diffusion Models via Distribution Shift

Shengwei An, Sheng-Yen Chou, Kaiyuan Zhang et al.

AAAI 2024paperarXiv:2312.00050
43
citations

Ensemble Pruning for Out-of-distribution Generalization

Fengchun Qiao, Xi Peng

ICML 2024

FlashST: A Simple and Universal Prompt-Tuning Framework for Traffic Prediction

Zhonghang Li, Lianghao Xia, Yong Xu et al.

ICML 2024oralarXiv:2405.17898
24
citations

HGL: Hierarchical Geometry Learning for Test-time Adaptation in 3D Point Cloud Segmentation

Tianpei Zou, Sanqing Qu, Zhijun Li et al.

ECCV 2024arXiv:2407.12387
7
citations

Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving

Zhenghao Peng, Wenjie Luo, Yiren Lu et al.

ECCV 2024arXiv:2409.18343
25
citations

Improving Generalization in Offline Reinforcement Learning via Adversarial Data Splitting

Da Wang, Lin Li, Wei Wei et al.

ICML 2024

Make Prompts Adaptable: Bayesian Modeling for Vision-Language Prompt Learning with Data-Dependent Prior

Youngjae Cho, HeeSun Bae, Seungjae Shin et al.

AAAI 2024paperarXiv:2401.06799
9
citations

Modality Translation for Object Detection Adaptation without forgetting prior knowledge

Heitor Rapela Medeiros, Masih Aminbeidokhti, Fidel A Guerrero Pena et al.

ECCV 2024arXiv:2404.01492
4
citations

Multi-Source Conformal Inference Under Distribution Shift

Yi Liu, Alexander Levis, Sharon-Lise Normand et al.

ICML 2024arXiv:2405.09331
18
citations

On Pretraining Data Diversity for Self-Supervised Learning

Hasan Abed El Kader Hammoud, Tuhin Das, Fabio Pizzati et al.

ECCV 2024arXiv:2403.13808
9
citations

OODRobustBench: a Benchmark and Large-Scale Analysis of Adversarial Robustness under Distribution Shift

Lin Li, Yifei Wang, Chawin Sitawarin et al.

ICML 2024arXiv:2310.12793
12
citations
PreviousNext