Poster "distribution shift" Papers

44 papers found

AdaWM: Adaptive World Model based Planning for Autonomous Driving

Hang Wang, Xin Ye, Feng Tao et al.

ICLR 2025arXiv:2501.13072
14
citations

ADPretrain: Advancing Industrial Anomaly Detection via Anomaly Representation Pretraining

Xincheng Yao, Yan Luo, Zefeng Qian et al.

NEURIPS 2025arXiv:2511.05245
2
citations

Balanced Direction from Multifarious Choices: Arithmetic Meta-Learning for Domain Generalization

Xiran Wang, Jian Zhang, Lei Qi et al.

CVPR 2025arXiv:2503.18987
4
citations

Bayesian Test-Time Adaptation for Vision-Language Models

Lihua Zhou, Mao Ye, Shuaifeng Li et al.

CVPR 2025arXiv:2503.09248
11
citations

CARL: Causality-guided Architecture Representation Learning for an Interpretable Performance Predictor

Han Ji, Yuqi Feng, Jiahao Fan et al.

ICCV 2025arXiv:2506.04001

Conformal Prediction in The Loop: A Feedback-Based Uncertainty Model for Trajectory Optimization

Han Wang, Chao Ning

NEURIPS 2025arXiv:2510.16376

Deep Kernel Relative Test for Machine-generated Text Detection

Yiliao Song, Zhenqiao Yuan, Shuhai Zhang et al.

ICLR 2025
11
citations

Epistemic Uncertainty for Generated Image Detection

Jun Nie, Yonggang Zhang, Tongliang Liu et al.

NEURIPS 2025arXiv:2412.05897
1
citations

Geometry of Long-Tailed Representation Learning: Rebalancing Features for Skewed Distributions

Lingjie Yi, Michael Yao, Weimin Lyu et al.

ICLR 2025
2
citations

High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws

Muhammed Ildiz, Halil Gozeten, Ege Taga et al.

ICLR 2025arXiv:2410.18837
13
citations

Keep It on a Leash: Controllable Pseudo-label Generation Towards Realistic Long-Tailed Semi-Supervised Learning

Yaxin Hou, Bo Han, Yuheng Jia et al.

NEURIPS 2025arXiv:2510.03993

Knowledge Distillation of Uncertainty using Deep Latent Factor Model

Sehyun Park, Jongjin Lee, Yunseop Shin et al.

NEURIPS 2025arXiv:2510.19290

Learning Neural Networks with Distribution Shift: Efficiently Certifiable Guarantees

Gautam Chandrasekaran, Adam Klivans, Lin Lin Lee et al.

ICLR 2025arXiv:2502.16021
1
citations

MetaOOD: Automatic Selection of OOD Detection Models

Yuehan Qin, Yichi Zhang, Yi Nian et al.

ICLR 2025arXiv:2410.03074
16
citations

Minimax Optimal Two-Stage Algorithm For Moment Estimation Under Covariate Shift

Zhen Zhang, Xin Liu, Shaoli Wang et al.

ICLR 2025arXiv:2506.23453
1
citations

Noisy Test-Time Adaptation in Vision-Language Models

Chentao Cao, Zhun Zhong, (Andrew) Zhanke Zhou et al.

ICLR 2025arXiv:2502.14604
4
citations

Optimizing importance weighting in the presence of sub-population shifts

Floris Holstege, Bram Wouters, Noud Giersbergen et al.

ICLR 2025arXiv:2410.14315
2
citations

RTDiff: Reverse Trajectory Synthesis via Diffusion for Offline Reinforcement Learning

Qianlan Yang, Yu-Xiong Wang

ICLR 2025

Synchronizing Task Behavior: Aligning Multiple Tasks during Test-Time Training

Wooseong Jeong, Jegyeong Cho, Youngho Yoon et al.

ICCV 2025arXiv:2507.07778
1
citations

Test-Time Ensemble via Linear Mode Connectivity: A Path to Better Adaptation

Byungjai Kim, Chanho Ahn, Wissam Baddar et al.

ICLR 2025
3
citations

Wasserstein-Regularized Conformal Prediction under General Distribution Shift

Rui Xu, Chao Chen, Yue Sun et al.

ICLR 2025arXiv:2501.13430
5
citations

A Noisy Elephant in the Room: Is Your Out-of-Distribution Detector Robust to Label Noise?

Galadrielle Humblot-Renaux, Sergio Escalera, Thomas B. Moeslund

CVPR 2024arXiv:2404.01775
15
citations

Cross-domain Open-world Discovery

Shuo Wen, Maria Brbic

ICML 2024arXiv:2406.11422
7
citations

Distributionally Robust Loss for Long-Tailed Multi-Label Image Classification

Dekun Lin, Zhe Cui, Rui Chen et al.

ECCV 2024
10
citations

Domain-wise Data Acquisition to Improve Performance under Distribution Shift

Yue He, Dongbai Li, Pengfei Tian et al.

ICML 2024

Ensemble Pruning for Out-of-distribution Generalization

Fengchun Qiao, Xi Peng

ICML 2024

HGL: Hierarchical Geometry Learning for Test-time Adaptation in 3D Point Cloud Segmentation

Tianpei Zou, Sanqing Qu, Zhijun Li et al.

ECCV 2024arXiv:2407.12387
7
citations

Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving

Zhenghao Peng, Wenjie Luo, Yiren Lu et al.

ECCV 2024arXiv:2409.18343
25
citations

Improving Generalization in Offline Reinforcement Learning via Adversarial Data Splitting

Da Wang, Lin Li, Wei Wei et al.

ICML 2024

Modality Translation for Object Detection Adaptation without forgetting prior knowledge

Heitor Rapela Medeiros, Masih Aminbeidokhti, Fidel A Guerrero Pena et al.

ECCV 2024arXiv:2404.01492
4
citations

Multi-Source Conformal Inference Under Distribution Shift

Yi Liu, Alexander Levis, Sharon-Lise Normand et al.

ICML 2024arXiv:2405.09331
18
citations

On Pretraining Data Diversity for Self-Supervised Learning

Hasan Abed El Kader Hammoud, Tuhin Das, Fabio Pizzati et al.

ECCV 2024arXiv:2403.13808
9
citations

OODRobustBench: a Benchmark and Large-Scale Analysis of Adversarial Robustness under Distribution Shift

Lin Li, Yifei Wang, Chawin Sitawarin et al.

ICML 2024arXiv:2310.12793
12
citations

Performative Prediction with Bandit Feedback: Learning through Reparameterization

Yatong Chen, Wei Tang, Chien-Ju Ho et al.

ICML 2024arXiv:2305.01094
12
citations

PracticalDG: Perturbation Distillation on Vision-Language Models for Hybrid Domain Generalization

Zining Chen, Weiqiu Wang, Zhicheng Zhao et al.

CVPR 2024arXiv:2404.09011
22
citations

Prompting is a Double-Edged Sword: Improving Worst-Group Robustness of Foundation Models

Amrith Setlur, Saurabh Garg, Virginia Smith et al.

ICML 2024

Pseudo-Calibration: Improving Predictive Uncertainty Estimation in Unsupervised Domain Adaptation

Dapeng Hu, Jian Liang, Xinchao Wang et al.

ICML 2024

Reducing Balancing Error for Causal Inference via Optimal Transport

Yuguang Yan, Hao Zhou, Zeqin Yang et al.

ICML 2024

SeMOPO: Learning High-quality Model and Policy from Low-quality Offline Visual Datasets

Shenghua Wan, Ziyuan Chen, Le Gan et al.

ICML 2024arXiv:2406.09486
1
citations

STAMP: Outlier-Aware Test-Time Adaptation with Stable Memory Replay

Yu Yongcan, Lijun Sheng, Ran He et al.

ECCV 2024arXiv:2407.15773
13
citations

T4P: Test-Time Training of Trajectory Prediction via Masked Autoencoder and Actor-specific Token Memory

Daehee Park, Jaeseok Jeong, Sung-Hoon Yoon et al.

CVPR 2024arXiv:2403.10052
18
citations

TabLog: Test-Time Adaptation for Tabular Data Using Logic Rules

Weijieying Ren, Xiaoting Li, Huiyuan Chen et al.

ICML 2024

Test-Time Model Adaptation with Only Forward Passes

Shuaicheng Niu, Chunyan Miao, Guohao Chen et al.

ICML 2024arXiv:2404.01650
60
citations

Theoretical Analysis of Learned Database Operations under Distribution Shift through Distribution Learnability

Sepanta Zeighami, Cyrus Shahabi

ICML 2024arXiv:2411.06241
4
citations