"partial differential equations" Papers

63 papers found • Page 1 of 2

ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning

Nilo Schwencke, Cyril Furtlehner

ICLR 2025arXiv:2412.10782
5
citations

Axial Neural Networks for Dimension-Free Foundation Models

Hyunsu Kim, Jonggeon Park, Joan Bruna et al.

NEURIPS 2025spotlightarXiv:2510.13665

Boundary constrained Gaussian processes for robust physics-informed machine learning of linear partial differential equations

David Dalton, Alan Lazarus, Hao Gao et al.

ICLR 2025

CALM-PDE: Continuous and Adaptive Convolutions for Latent Space Modeling of Time-dependent PDEs

Jan Hagnberger, Daniel Musekamp, Mathias Niepert

NEURIPS 2025spotlightarXiv:2505.12944
2
citations

Collapsing Taylor Mode Automatic Differentiation

Felix Dangel, Tim Siebert, Marius Zeinhofer et al.

NEURIPS 2025arXiv:2505.13644

ConFIG: Towards Conflict-free Training of Physics Informed Neural Networks

Qiang Liu, Mengyu Chu, Nils Thuerey

ICLR 2025arXiv:2408.11104
23
citations

Continuous Simplicial Neural Networks

Aref Einizade, Dorina Thanou, Fragkiskos Malliaros et al.

NEURIPS 2025arXiv:2503.12919
2
citations

Curvature-aware Graph Attention for PDEs on Manifolds

Yunfeng Liao, Jiawen Guan, Xiucheng Li

ICML 2025

CViT: Continuous Vision Transformer for Operator Learning

Sifan Wang, Jacob Seidman, Shyam Sankaran et al.

ICLR 2025oralarXiv:2405.13998
31
citations

DISCO: learning to DISCover an evolution Operator for multi-physics-agnostic prediction

Rudy Morel, Jiequn Han, Edouard Oyallon

ICML 2025oralarXiv:2504.19496
8
citations

Gradient Alignment in Physics-informed Neural Networks: A Second-Order Optimization Perspective

Sifan Wang, Ananyae bhartari, Bowen Li et al.

NEURIPS 2025arXiv:2502.00604
38
citations

Gradient-Free Generation for Hard-Constrained Systems

Chaoran Cheng, Boran Han, Danielle Maddix et al.

ICLR 2025arXiv:2412.01786
20
citations

Hybrid Boundary Physics-Informed Neural Networks for Solving Navier-Stokes Equations with Complex Boundary

ChuYu Zhou, Tianyu Li, Chenxi Lan et al.

NEURIPS 2025arXiv:2507.17535

Metamizer: A Versatile Neural Optimizer for Fast and Accurate Physics Simulations

Nils Wandel, Stefan Schulz, Reinhard Klein

ICLR 2025arXiv:2410.19746
5
citations

Minimal Variance Model Aggregation: A principled, non-intrusive, and versatile integration of black box models

Theo Bourdais, Houman Owhadi

ICLR 2025arXiv:2409.17267
2
citations

Model-Agnostic Knowledge Guided Correction for Improved Neural Surrogate Rollout

Bharat Srikishan, Daniel O'Malley, Mohamed Mehana et al.

ICLR 2025arXiv:2503.10048

Neuro-Spectral Architectures for Causal Physics-Informed Networks

Arthur Bizzi, Leonardo Moreira, Márcio Marques et al.

NEURIPS 2025oralarXiv:2509.04966
1
citations

Physics-Constrained Flow Matching: Sampling Generative Models with Hard Constraints

Utkarsh Utkarsh, Pengfei Cai, Alan Edelman et al.

NEURIPS 2025arXiv:2506.04171
17
citations

Physics-Informed Diffusion Models

Jan-Hendrik Bastek, WaiChing Sun, Dennis Kochmann

ICLR 2025arXiv:2403.14404
57
citations

PIED: Physics-Informed Experimental Design for Inverse Problems

Apivich Hemachandra, Gregory Kang Ruey Lau, See-Kiong Ng et al.

ICLR 2025arXiv:2503.07070
1
citations

PIG: Physics-Informed Gaussians as Adaptive Parametric Mesh Representations

Namgyu Kang, Jaemin Oh, Youngjoon Hong et al.

ICLR 2025arXiv:2412.05994
8
citations

PINN Balls: Scaling Second-Order Methods for PINNs with Domain Decomposition and Adaptive Sampling

Andrea Bonfanti, Ismael Medina, Roman List et al.

NEURIPS 2025arXiv:2510.21262

PINNs with Learnable Quadrature

Sourav Pal, Kamyar Azizzadenesheli, Vikas Singh

NEURIPS 2025

Quantitative Approximation for Neural Operators in Nonlinear Parabolic Equations

Takashi Furuya, Koichi Taniguchi, Satoshi Okuda

ICLR 2025arXiv:2410.02151
4
citations

RIGNO: A Graph-based Framework For Robust And Accurate Operator Learning For PDEs On Arbitrary Domains

Sepehr Mousavi, Shizheng Wen, Levi Lingsch et al.

NEURIPS 2025oralarXiv:2501.19205
6
citations

Solving and Learning Partial Differential Equations with Variational Q-Exponential Processes

Guangting Yu, Shiwei Lan

NEURIPS 2025

Solving Differential Equations with Constrained Learning

Viggo Moro, Luiz Chamon

ICLR 2025arXiv:2410.22796
2
citations

Solving Partial Differential Equations via Radon Neural Operator

Wenbin Lu, Yihan Chen, Junnan Xu et al.

NEURIPS 2025
4
citations

Symbolic Neural Ordinary Differential Equations

Xin Li, Chengli Zhao, Xue Zhang et al.

AAAI 2025paperarXiv:2503.08059
3
citations

Text2PDE: Latent Diffusion Models for Accessible Physics Simulation

Anthony Zhou, Zijie Li, Michael Schneier et al.

ICLR 2025oralarXiv:2410.01153
20
citations

Thompson Sampling in Function Spaces via Neural Operators

Rafael Oliveira, Xuesong Wang, Kian Ming Chai et al.

NEURIPS 2025arXiv:2506.21894

UGM2N: An Unsupervised and Generalizable Mesh Movement Network via M-Uniform Loss

Zhichao Wang, Xinhai Chen, Qinglin Wang et al.

NEURIPS 2025arXiv:2508.08615
1
citations

$\bf{\Phi}_\textrm{Flow}$: Differentiable Simulations for PyTorch, TensorFlow and Jax

Philipp Holl, Nils Thuerey

ICML 2024

Accelerating PDE Data Generation via Differential Operator Action in Solution Space

huanshuo dong, Hong Wang, Haoyang Liu et al.

ICML 2024arXiv:2402.05957
14
citations

A General Theory for Softmax Gating Multinomial Logistic Mixture of Experts

Huy Nguyen, Pedram Akbarian, TrungTin Nguyen et al.

ICML 2024arXiv:2310.14188
26
citations

Beyond Regular Grids: Fourier-Based Neural Operators on Arbitrary Domains

Levi Lingsch, Mike Yan Michelis, Emmanuel de Bézenac et al.

ICML 2024arXiv:2305.19663
19
citations

Challenges in Training PINNs: A Loss Landscape Perspective

Pratik Rathore, Weimu Lei, Zachary Frangella et al.

ICML 2024arXiv:2402.01868
116
citations

Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss

Yahong Yang, Juncai He

ICML 2024arXiv:2402.00152
13
citations

DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training

Zhongkai Hao, Chang Su, LIU SONGMING et al.

ICML 2024arXiv:2403.03542
92
citations

Efficient Error Certification for Physics-Informed Neural Networks

Francisco Eiras, Adel Bibi, Rudy Bunel et al.

ICML 2024oralarXiv:2305.10157
4
citations

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Masanobu Horie, NAOTO MITSUME

ICML 2024arXiv:2405.16183
15
citations

HAMLET: Graph Transformer Neural Operator for Partial Differential Equations

Andrey Bryutkin, Jiahao Huang, Zhongying Deng et al.

ICML 2024arXiv:2402.03541
19
citations

Improved Operator Learning by Orthogonal Attention

Zipeng Xiao, Zhongkai Hao, Bokai Lin et al.

ICML 2024spotlightarXiv:2310.12487
40
citations

Inducing Point Operator Transformer: A Flexible and Scalable Architecture for Solving PDEs

Seungjun Lee, TaeIL Oh

AAAI 2024paperarXiv:2312.10975
18
citations

Liouville Flow Importance Sampler

Yifeng Tian, Nishant Panda, Yen Ting Lin

ICML 2024arXiv:2405.06672
19
citations

Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling

Brooks(Ruijia) Niu, Dongxia Wu, Kai Kim et al.

ICML 2024arXiv:2402.18846
13
citations

Neural operators meet conjugate gradients: The FCG-NO method for efficient PDE solving

Alexander Rudikov, Fanaskov Vladimir, Ekaterina Muravleva et al.

ICML 2024arXiv:2402.05598
11
citations

Neural Operators with Localized Integral and Differential Kernels

Miguel Liu-Schiaffini, Julius Berner, Boris Bonev et al.

ICML 2024arXiv:2402.16845
56
citations

Neuroexplicit Diffusion Models for Inpainting of Optical Flow Fields

Tom Fischer, Pascal Peter, Joachim Weickert et al.

ICML 2024arXiv:2405.14599

Operator-Learning-Inspired Modeling of Neural Ordinary Differential Equations

Woojin Cho, Seunghyeon Cho, Hyundong Jin et al.

AAAI 2024paperarXiv:2312.10274
3
citations
PreviousNext