Poster "partial differential equations" Papers

47 papers found

ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning

Nilo Schwencke, Cyril Furtlehner

ICLR 2025arXiv:2412.10782
5
citations

Boundary constrained Gaussian processes for robust physics-informed machine learning of linear partial differential equations

David Dalton, Alan Lazarus, Hao Gao et al.

ICLR 2025

Collapsing Taylor Mode Automatic Differentiation

Felix Dangel, Tim Siebert, Marius Zeinhofer et al.

NEURIPS 2025arXiv:2505.13644

ConFIG: Towards Conflict-free Training of Physics Informed Neural Networks

Qiang Liu, Mengyu Chu, Nils Thuerey

ICLR 2025arXiv:2408.11104
23
citations

Continuous Simplicial Neural Networks

Aref Einizade, Dorina Thanou, Fragkiskos Malliaros et al.

NEURIPS 2025arXiv:2503.12919
2
citations

Curvature-aware Graph Attention for PDEs on Manifolds

Yunfeng Liao, Jiawen Guan, Xiucheng Li

ICML 2025

Gradient Alignment in Physics-informed Neural Networks: A Second-Order Optimization Perspective

Sifan Wang, Ananyae bhartari, Bowen Li et al.

NEURIPS 2025arXiv:2502.00604
38
citations

Gradient-Free Generation for Hard-Constrained Systems

Chaoran Cheng, Boran Han, Danielle Maddix et al.

ICLR 2025arXiv:2412.01786
20
citations

Hybrid Boundary Physics-Informed Neural Networks for Solving Navier-Stokes Equations with Complex Boundary

ChuYu Zhou, Tianyu Li, Chenxi Lan et al.

NEURIPS 2025arXiv:2507.17535

Metamizer: A Versatile Neural Optimizer for Fast and Accurate Physics Simulations

Nils Wandel, Stefan Schulz, Reinhard Klein

ICLR 2025arXiv:2410.19746
5
citations

Minimal Variance Model Aggregation: A principled, non-intrusive, and versatile integration of black box models

Theo Bourdais, Houman Owhadi

ICLR 2025arXiv:2409.17267
2
citations

Model-Agnostic Knowledge Guided Correction for Improved Neural Surrogate Rollout

Bharat Srikishan, Daniel O'Malley, Mohamed Mehana et al.

ICLR 2025arXiv:2503.10048

Physics-Constrained Flow Matching: Sampling Generative Models with Hard Constraints

Utkarsh Utkarsh, Pengfei Cai, Alan Edelman et al.

NEURIPS 2025arXiv:2506.04171
17
citations

Physics-Informed Diffusion Models

Jan-Hendrik Bastek, WaiChing Sun, Dennis Kochmann

ICLR 2025arXiv:2403.14404
57
citations

PIED: Physics-Informed Experimental Design for Inverse Problems

Apivich Hemachandra, Gregory Kang Ruey Lau, See-Kiong Ng et al.

ICLR 2025arXiv:2503.07070
1
citations

PIG: Physics-Informed Gaussians as Adaptive Parametric Mesh Representations

Namgyu Kang, Jaemin Oh, Youngjoon Hong et al.

ICLR 2025arXiv:2412.05994
8
citations

PINN Balls: Scaling Second-Order Methods for PINNs with Domain Decomposition and Adaptive Sampling

Andrea Bonfanti, Ismael Medina, Roman List et al.

NEURIPS 2025arXiv:2510.21262

PINNs with Learnable Quadrature

Sourav Pal, Kamyar Azizzadenesheli, Vikas Singh

NEURIPS 2025

Quantitative Approximation for Neural Operators in Nonlinear Parabolic Equations

Takashi Furuya, Koichi Taniguchi, Satoshi Okuda

ICLR 2025arXiv:2410.02151
4
citations

Solving and Learning Partial Differential Equations with Variational Q-Exponential Processes

Guangting Yu, Shiwei Lan

NEURIPS 2025

Solving Differential Equations with Constrained Learning

Viggo Moro, Luiz Chamon

ICLR 2025arXiv:2410.22796
2
citations

Solving Partial Differential Equations via Radon Neural Operator

Wenbin Lu, Yihan Chen, Junnan Xu et al.

NEURIPS 2025
4
citations

Thompson Sampling in Function Spaces via Neural Operators

Rafael Oliveira, Xuesong Wang, Kian Ming Chai et al.

NEURIPS 2025arXiv:2506.21894

UGM2N: An Unsupervised and Generalizable Mesh Movement Network via M-Uniform Loss

Zhichao Wang, Xinhai Chen, Qinglin Wang et al.

NEURIPS 2025arXiv:2508.08615
1
citations

$\bf{\Phi}_\textrm{Flow}$: Differentiable Simulations for PyTorch, TensorFlow and Jax

Philipp Holl, Nils Thuerey

ICML 2024

Accelerating PDE Data Generation via Differential Operator Action in Solution Space

huanshuo dong, Hong Wang, Haoyang Liu et al.

ICML 2024arXiv:2402.05957
14
citations

A General Theory for Softmax Gating Multinomial Logistic Mixture of Experts

Huy Nguyen, Pedram Akbarian, TrungTin Nguyen et al.

ICML 2024arXiv:2310.14188
26
citations

Beyond Regular Grids: Fourier-Based Neural Operators on Arbitrary Domains

Levi Lingsch, Mike Yan Michelis, Emmanuel de Bézenac et al.

ICML 2024arXiv:2305.19663
19
citations

Challenges in Training PINNs: A Loss Landscape Perspective

Pratik Rathore, Weimu Lei, Zachary Frangella et al.

ICML 2024arXiv:2402.01868
116
citations

Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss

Yahong Yang, Juncai He

ICML 2024arXiv:2402.00152
13
citations

DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training

Zhongkai Hao, Chang Su, LIU SONGMING et al.

ICML 2024arXiv:2403.03542
92
citations

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Masanobu Horie, NAOTO MITSUME

ICML 2024arXiv:2405.16183
15
citations

HAMLET: Graph Transformer Neural Operator for Partial Differential Equations

Andrey Bryutkin, Jiahao Huang, Zhongying Deng et al.

ICML 2024arXiv:2402.03541
19
citations

Liouville Flow Importance Sampler

Yifeng Tian, Nishant Panda, Yen Ting Lin

ICML 2024arXiv:2405.06672
19
citations

Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling

Brooks(Ruijia) Niu, Dongxia Wu, Kai Kim et al.

ICML 2024arXiv:2402.18846
13
citations

Neural operators meet conjugate gradients: The FCG-NO method for efficient PDE solving

Alexander Rudikov, Fanaskov Vladimir, Ekaterina Muravleva et al.

ICML 2024arXiv:2402.05598
11
citations

Neural Operators with Localized Integral and Differential Kernels

Miguel Liu-Schiaffini, Julius Berner, Boris Bonev et al.

ICML 2024arXiv:2402.16845
56
citations

Neuroexplicit Diffusion Models for Inpainting of Optical Flow Fields

Tom Fischer, Pascal Peter, Joachim Weickert et al.

ICML 2024arXiv:2405.14599

Physics and Lie symmetry informed Gaussian processes

David Dalton, Dirk Husmeier, Hao Gao

ICML 2024

Physics-Informed Neural Network Policy Iteration: Algorithms, Convergence, and Verification

Yiming Meng, Ruikun Zhou, Amartya Mukherjee et al.

ICML 2024arXiv:2402.10119
17
citations

Positional Knowledge is All You Need: Position-induced Transformer (PiT) for Operator Learning

Junfeng CHEN, Kailiang Wu

ICML 2024arXiv:2405.09285
14
citations

Reference Neural Operators: Learning the Smooth Dependence of Solutions of PDEs on Geometric Deformations

Ze Cheng, Zhongkai Hao, Wang Xiaoqiang et al.

ICML 2024arXiv:2405.17509
5
citations

Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation

Sergei Shumilin, Alexander Ryabov, Nikolay Yavich et al.

ICML 2024arXiv:2507.18297
2
citations

TENG: Time-Evolving Natural Gradient for Solving PDEs With Deep Neural Nets Toward Machine Precision

Zhuo Chen, Jacob McCarran, Esteban Vizcaino et al.

ICML 2024arXiv:2404.10771
6
citations

Towards General Neural Surrogate Solvers with Specialized Neural Accelerators

Chenkai Mao, Robert Lupoiu, Tianxiang Dai et al.

ICML 2024arXiv:2405.02351
10
citations

Towards Robust Full Low-bit Quantization of Super Resolution Networks

Denis Makhov, Irina Zhelavskaya, Ruslan Ostapets et al.

ECCV 2024
1
citations

Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs

Chandra Mouli Sekar, Danielle Robinson, Shima Alizadeh et al.

ICML 2024