Poster "recommender systems" Papers

13 papers found

Can LLMs Outshine Conventional Recommenders? A Comparative Evaluation

Qijiong Liu, Jieming Zhu, Lu Fan et al.

NEURIPS 2025arXiv:2503.05493
4
citations

Fading to Grow: Growing Preference Ratios via Preference Fading Discrete Diffusion for Recommendation

Guoqing Hu, An Zhang, Shuchang Liu et al.

NEURIPS 2025arXiv:2509.26063

Language Representations Can be What Recommenders Need: Findings and Potentials

Leheng Sheng, An Zhang, Yi Zhang et al.

ICLR 2025arXiv:2407.05441
26
citations

MultiScale Contextual Bandits for Long Term Objectives

Richa Rastogi, Yuta Saito, Thorsten Joachims

NEURIPS 2025arXiv:2503.17674

Negative Feedback Really Matters: Signed Dual-Channel Graph Contrastive Learning Framework for Recommendation

Leqi Zheng, Chaokun Wang, Zixin Song et al.

NEURIPS 2025

Normed Spaces for Graph Embedding

Wei Zhao, Diaaeldin Taha, J. Riestenberg et al.

ICLR 2025arXiv:2312.01502
1
citations

ORBIT - Open Recommendation Benchmark for Reproducible Research with Hidden Tests

Jingyuan He, Jiongnan Liu, Vishan Oberoi et al.

NEURIPS 2025arXiv:2510.26095

PAC-Bayes Bounds for Multivariate Linear Regression and Linear Autoencoders

Ruixin Guo, Ruoming Jin, Xinyu Li et al.

NEURIPS 2025arXiv:2512.12905
1
citations

TranSUN: A Preemptive Paradigm to Eradicate Retransformation Bias Intrinsically from Regression Models in Recommender Systems

Jiahao Yu, Haozhuang Liu, Yeqiu Yang et al.

NEURIPS 2025arXiv:2505.13881
2
citations

True Impact of Cascade Length in Contextual Cascading Bandits

Hyun-jun Choi, Joongkyu Lee, Min-hwan Oh

NEURIPS 2025

High-Order Contrastive Learning with Fine-grained Comparative Levels for Sparse Ordinal Tensor Completion

Yu Dai, Junchen Shen, Zijie Zhai et al.

ICML 2024

MoMo: Momentum Models for Adaptive Learning Rates

Fabian Schaipp, Ruben Ohana, Michael Eickenberg et al.

ICML 2024arXiv:2305.07583
20
citations

On the Unexpected Effectiveness of Reinforcement Learning for Sequential Recommendation

Álvaro Labarca Silva, Denis Parra, Rodrigo A Toro Icarte

ICML 2024