"uncertainty estimation" Papers
65 papers found • Page 1 of 2
Conference
AcuRank: Uncertainty-Aware Adaptive Computation for Listwise Reranking
Soyoung Yoon, Gyuwan Kim, Gyu-Hwung Cho et al.
Batch Selection for Multi-Label Classification Guided by Uncertainty and Dynamic Label Correlations
Ao Zhou, Bin Liu, Jin Wang et al.
Calibrating LLMs with Information-Theoretic Evidential Deep Learning
Yawei Li, David Rügamer, Bernd Bischl et al.
Causal Discovery via Bayesian Optimization
Bao Duong, Sunil Gupta, Thin Nguyen
Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification
Kaizheng Wang, Fabio Cuzzolin, Keivan Shariatmadar et al.
Diffusion-Driven Two-Stage Active Learning for Low-Budget Semantic Segmentation
Jeongin Kim, Wonho Bae, YouLee Han et al.
Do LLMs estimate uncertainty well in instruction-following?
Juyeon Heo, Miao Xiong, Christina Heinze-Deml et al.
DyCON: Dynamic Uncertainty-aware Consistency and Contrastive Learning for Semi-supervised Medical Image Segmentation
Maregu Assefa, Muzammal Naseer, IYYAKUTTI IYAPPAN GANAPATHI et al.
Enhancing Deep Batch Active Learning for Regression with Imperfect Data Guided Selection
Yinjie Min, Furong Xu, Xinyao Li et al.
Enhancing Uncertainty Estimation and Interpretability with Bayesian Non-negative Decision Layer
XINYUE HU, Zhibin Duan, Bo Chen et al.
Epistemic Uncertainty for Generated Image Detection
Jun Nie, Yonggang Zhang, Tongliang Liu et al.
Forking Paths in Neural Text Generation
Eric Bigelow, Ari Holtzman, Hidenori Tanaka et al.
Harnessing Uncertainty-aware Bounding Boxes for Unsupervised 3D Object Detection
Ruiyang Zhang, Hu Zhang, Zhedong Zheng
Hierarchical Uncertainty Estimation for Learning-based Registration in Neuroimaging
Xiaoling Hu, Karthik Gopinath, Peirong Liu et al.
Improving Uncertainty Estimation through Semantically Diverse Language Generation
Lukas Aichberger, Kajetan Schweighofer, Mykyta Ielanskyi et al.
MonoInstance: Enhancing Monocular Priors via Multi-view Instance Alignment for Neural Rendering and Reconstruction
Wenyuan Zhang, Yixiao Yang, Han Huang et al.
Multi-domain Distribution Learning for De Novo Drug Design
Arne Schneuing, Ilia Igashov, Adrian Dobbelstein et al.
Neural Context Flows for Meta-Learning of Dynamical Systems
Roussel Desmond Nzoyem, David Barton, Tom Deakin
Neural Stochastic Differential Equations for Uncertainty-Aware Offline RL
Cevahir Koprulu, Franck Djeumou, ufuk topcu
Prior2Former - Evidential Modeling of Mask Transformers for Assumption-Free Open-World Panoptic Segmentation
Sebastian Schmidt, Julius Koerner, Dominik Fuchsgruber et al.
Quantifying Uncertainty in the Presence of Distribution Shifts
Yuli Slavutsky, David Blei
REPEAT: Improving Uncertainty Estimation in Representation Learning Explainability
Kristoffer K. Wickstrøm, Thea Brüsch, Michael C. Kampffmeyer et al.
Robust and Computation-Aware Gaussian Processes
Robust Sampling for Active Statistical Inference
Puheng Li, Tijana Zrnic, Emmanuel Candes
SEGA: Shaping Semantic Geometry for Robust Hashing under Noisy Supervision
Yiyang Gu, Bohan Wu, Qinghua Ran et al.
Self-Evolutionary Large Language Models Through Uncertainty-Enhanced Preference Optimization
Jianing Wang, Yang Zhou, Xiaocheng Zhang et al.
Test Time Scaling for Neural Processes
Hyungi Lee, Moonseok Choi, Hyunsu Kim et al.
Towards Understanding Why Label Smoothing Degrades Selective Classification and How to Fix It
Guoxuan Xia, Olivier Laurent, Gianni Franchi et al.
Training-Free Bayesianization for Low-Rank Adapters of Large Language Models
Haizhou Shi, Yibin Wang, Ligong Han et al.
U-Know-DiffPAN: An Uncertainty-aware Knowledge Distillation Diffusion Framework with Details Enhancement for PAN-Sharpening
Sungpyo Kim, Jeonghyeok Do, Jaehyup Lee et al.
Uncertainty and Influence aware Reward Model Refinement for Reinforcement Learning from Human Feedback
Zexu Sun, Yiju Guo, Yankai Lin et al.
Uncertainty-Driven Expert Control: Enhancing the Reliability of Medical Vision-Language Models
Xiao Liang, Di Wang, Zhicheng Jiao et al.
Uncertainty-Informed Meta Pseudo Labeling for Surrogate Modeling with Limited Labeled Data
Xingyu Ren, Pengwei Liu, Pengkai Wang et al.
Uncertainty modeling for fine-tuned implicit functions
Anna Susmelj, Mael Macuglia, Natasa Tagasovska et al.
Uncertainty-Sensitive Privileged Learning
Fan-Ming Luo, Lei Yuan, Yang Yu
Uncertainty Weighted Gradients for Model Calibration
Jinxu Lin, Linwei Tao, Minjing Dong et al.
Unified Uncertainty-Aware Diffusion for Multi-Agent Trajectory Modeling
Guillem Capellera, Antonio Rubio, Luis Ferraz et al.
Vicinal Label Supervision for Reliable Aleatoric and Epistemic Uncertainty Estimation
Linye Li, Yufei Chen, Xiaodong Yue
Zero-shot Model-based Reinforcement Learning using Large Language Models
Abdelhakim Benechehab, Youssef Attia El Hili, Ambroise Odonnat et al.
A Bias-Variance-Covariance Decomposition of Kernel Scores for Generative Models
Sebastian Gregor Gruber, Florian Buettner
Accurate Training Data for Occupancy Map Prediction in Automated Driving Using Evidence Theory
Jonas Kälble, Sascha Wirges, Maxim Tatarchenko et al.
An Empirical Study Into What Matters for Calibrating Vision-Language Models
Weijie Tu, Weijian Deng, Dylan Campbell et al.
Bayesian Self-Training for Semi-Supervised 3D Segmentation
Ozan Unal, Christos Sakaridis, Luc Van Gool
cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet Process
Yihang Chen, TSAI HOR CHAN, Guosheng Yin et al.
Conformalized Adaptive Forecasting of Heterogeneous Trajectories
Yanfei Zhou, Lars Lindemann, Matteo Sesia
Density-Softmax: Efficient Test-time Model for Uncertainty Estimation and Robustness under Distribution Shifts
Ha Manh Bui, Anqi Liu
Depth-guided NeRF Training via Earth Mover’s Distance
Anita Rau, Josiah Aklilu, Floyd C Holsinger et al.
Differentiable Annealed Importance Sampling Minimizes The Jensen-Shannon Divergence Between Initial and Target Distribution
Johannes Zenn, Robert Bamler
Efficient Exploration for LLMs
Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao et al.
Enabling Uncertainty Estimation in Iterative Neural Networks
Nikita Durasov, Doruk Oner, Jonathan Donier et al.