Poster "variance reduction" Papers

13 papers found

Better Estimation of the Kullback--Leibler Divergence Between Language Models

Afra Amini, Tim Vieira, Ryan Cotterell

NEURIPS 2025arXiv:2504.10637
4
citations

Doubly Optimal Policy Evaluation for Reinforcement Learning

Shuze Liu, Claire Chen, Shangtong Zhang

ICLR 2025arXiv:2410.02226
5
citations

Efficient Policy Evaluation with Safety Constraint for Reinforcement Learning

Claire Chen, Shuze Liu, Shangtong Zhang

ICLR 2025arXiv:2410.05655
1
citations

Minimal Variance Model Aggregation: A principled, non-intrusive, and versatile integration of black box models

Theo Bourdais, Houman Owhadi

ICLR 2025arXiv:2409.17267
2
citations

On the Convergence of Stochastic Smoothed Multi-Level Compositional Gradient Descent Ascent

Xinwen Zhang, Hongchang Gao

NEURIPS 2025

PseuZO: Pseudo-Zeroth-Order Algorithm for Training Deep Neural Networks

Pengyun Yue, Xuanlin Yang, Mingqing Xiao et al.

NEURIPS 2025

Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold

Hoang Phuc Hau Luu, Hanlin Yu, Bernardo Williams et al.

ICLR 2025arXiv:2410.02490
1
citations

Efficient Algorithms for Empirical Group Distributionally Robust Optimization and Beyond

Dingzhi Yu, Yunuo Cai, Wei Jiang et al.

ICML 2024arXiv:2403.03562
7
citations

Efficient Policy Evaluation with Offline Data Informed Behavior Policy Design

Shuze Liu, Shangtong Zhang

ICML 2024arXiv:2301.13734
7
citations

Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction

Undral Byambadalai, Tatsushi Oka, Shota Yasui

ICML 2024arXiv:2407.16037
6
citations

Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games

Songtao Feng, Ming Yin, Yu-Xiang Wang et al.

ICML 2024arXiv:2308.08858
2
citations

Non-convex Stochastic Composite Optimization with Polyak Momentum

Yuan Gao, Anton Rodomanov, Sebastian Stich

ICML 2024arXiv:2403.02967
13
citations

SILVER: Single-loop variance reduction and application to federated learning

Kazusato Oko, Shunta Akiyama, Denny Wu et al.

ICML 2024