"variational inference" Papers

71 papers found • Page 1 of 2

Act to See, See to Act: Diffusion-Driven Perception-Action Interplay for Adaptive Policies

Jing Wang, Weiting Peng, Jing Tang et al.

NEURIPS 2025arXiv:2509.25822

Approximated Variational Bayesian Inverse Reinforcement Learning for Large Language Model Alignment

Yuang Cai, Yuyu Yuan, Jinsheng Shi et al.

AAAI 2025paperarXiv:2411.09341
4
citations

Bayesian Image Regression with Soft-thresholded Conditional Autoregressive Prior

Yuliang Xu, Jian Kang

ICLR 2025

Brain-like Variational Inference

Hadi Vafaii, Dekel Galor, Jacob Yates

NEURIPS 2025arXiv:2410.19315
5
citations

Bridging the Gap between Variational Inference and Stochastic Gradient MCMC in Function Space

Mengjing Wu, Junyu Xuan, Jie Lu

ICLR 2025

Deep Taxonomic Networks for Unsupervised Hierarchical Prototype Discovery

Zekun Wang, Ethan Haarer, Tianyi Zhu et al.

NEURIPS 2025arXiv:2509.23602

Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors

Wasu Top Piriyakulkij, Yingheng Wang, Volodymyr Kuleshov

AAAI 2025paperarXiv:2401.02739
2
citations

Efficient Reinforcement Learning with Large Language Model Priors

Xue Yan, Yan Song, Xidong Feng et al.

ICLR 2025arXiv:2410.07927
21
citations

Enhancing Uncertainty Estimation and Interpretability with Bayesian Non-negative Decision Layer

XINYUE HU, Zhibin Duan, Bo Chen et al.

ICLR 2025arXiv:2505.22199
3
citations

FisherTune: Fisher-Guided Robust Tuning of Vision Foundation Models for Domain Generalized Segmentation

Dong Zhao, Jinlong Li, Shuang Wang et al.

CVPR 2025arXiv:2503.17940
10
citations

HoT-VI: Reparameterizable Variational Inference for Capturing Instance-Level High-Order Correlations

Junxi Xiao, Qinliang Su, Zexin Yuan

NEURIPS 2025

Injective flows for star-like manifolds

Marcello Negri, Jonathan Aellen, Volker Roth

ICLR 2025arXiv:2406.09116
1
citations

Large Language Bayes

Justin Domke

NEURIPS 2025arXiv:2504.14025
2
citations

Latent Chain-of-Thought for Visual Reasoning

Guohao Sun, Hang Hua, Jian Wang et al.

NEURIPS 2025arXiv:2510.23925
13
citations

Least squares variational inference

Yvann Le Fay, Nicolas Chopin, Simon Barthelmé

NEURIPS 2025arXiv:2502.18475
1
citations

Model-Informed Flows for Bayesian Inference

Joohwan Ko, Justin Domke

NEURIPS 2025arXiv:2505.24243

Multi-View Oriented GPLVM: Expressiveness and Efficiency

Zi Yang, Ying Li, Zhidi Lin et al.

NEURIPS 2025arXiv:2502.08253

Nearly Dimension-Independent Convergence of Mean-Field Black-Box Variational Inference

Kyurae Kim, Yian Ma, Trevor Campbell et al.

NEURIPS 2025arXiv:2505.21721

NeuralSurv: Deep Survival Analysis with Bayesian Uncertainty Quantification

Mélodie Monod, Alessandro Micheli, Samir Bhatt

NEURIPS 2025arXiv:2505.11054

Personalized Bayesian Federated Learning with Wasserstein Barycenter Aggregation

Ting Wei, Biao Mei, Junliang Lyu et al.

NEURIPS 2025arXiv:2505.14161
1
citations

Progressive Compression with Universally Quantized Diffusion Models

Yibo Yang, Justus Will, Stephan Mandt

ICLR 2025arXiv:2412.10935
5
citations

Quantifying Uncertainty in the Presence of Distribution Shifts

Yuli Slavutsky, David Blei

NEURIPS 2025arXiv:2506.18283
1
citations

Rao-Blackwellised Reparameterisation Gradients

Kevin H. Lam, Thang Bui, George Deligiannidis et al.

NEURIPS 2025arXiv:2506.07687

Scalable Discrete Diffusion Samplers: Combinatorial Optimization and Statistical Physics

Sebastian Sanokowski, Wilhelm Berghammer, Haoyu Wang et al.

ICLR 2025arXiv:2502.08696
17
citations

Seal Your Backdoor with Variational Defense

Ivan Sabolic, Matej Grcic, Siniša Šegvić

ICCV 2025arXiv:2503.08829
1
citations

SFESS: Score Function Estimators for $k$-Subset Sampling

Klas Wijk, Ricardo Vinuesa, Hossein Azizpour

ICLR 2025
1
citations

SING: SDE Inference via Natural Gradients

Amber Hu, Henry Smith, Scott Linderman

NEURIPS 2025arXiv:2506.17796
2
citations

Solving and Learning Partial Differential Equations with Variational Q-Exponential Processes

Guangting Yu, Shiwei Lan

NEURIPS 2025

Solving Inverse Problems with FLAIR

Julius Erbach, Dominik Narnhofer, Andreas Dombos et al.

NEURIPS 2025arXiv:2506.02680
8
citations

Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold

Hoang Phuc Hau Luu, Hanlin Yu, Bernardo Williams et al.

ICLR 2025arXiv:2410.02490
1
citations

Test Time Scaling for Neural Processes

Hyungi Lee, Moonseok Choi, Hyunsu Kim et al.

NEURIPS 2025

Training-Free Bayesianization for Low-Rank Adapters of Large Language Models

Haizhou Shi, Yibin Wang, Ligong Han et al.

NEURIPS 2025arXiv:2412.05723
3
citations

Training Robust Graph Neural Networks by Modeling Noise Dependencies

Yeonjun In, Kanghoon Yoon, Sukwon Yun et al.

NEURIPS 2025arXiv:2502.19670

VaMP: Variational Multi-Modal Prompt Learning for Vision-Language Models

Silin Cheng, Kai Han

NEURIPS 2025arXiv:2511.22664
1
citations

Variational Bayesian Pseudo-Coreset

Hyungi Lee, Seungyoo Lee, Juho Lee

ICLR 2025arXiv:2502.21143

Variational Best-of-N Alignment

Afra Amini, Tim Vieira, Elliott Ash et al.

ICLR 2025arXiv:2407.06057
38
citations

Variational Inference with Mixtures of Isotropic Gaussians

Marguerite Petit-Talamon, Marc Lambert, Anna Korba

NEURIPS 2025arXiv:2506.13613

Variational Polya Tree

Lu Xu, Tsai Hor Chan, Lequan Yu et al.

NEURIPS 2025arXiv:2510.22651

Variational Regularized Unbalanced Optimal Transport: Single Network, Least Action

Yuhao Sun, Zhenyi Zhang, Zihan Wang et al.

NEURIPS 2025arXiv:2505.11823
7
citations

Variational Search Distributions

Dan Steinberg, Rafael Oliveira, Cheng Soon Ong et al.

ICLR 2025arXiv:2409.06142
5
citations

Variational Task Vector Composition

Boyuan Zhang, Yingjun Du, Xiantong Zhen et al.

NEURIPS 2025arXiv:2509.18208
1
citations

Variational Uncertainty Decomposition for In-Context Learning

I. Shavindra Jayasekera, Jacob Si, Filippo Valdettaro et al.

NEURIPS 2025arXiv:2509.02327
2
citations

VERA: Variational Inference Framework for Jailbreaking Large Language Models

Anamika Lochab, Lu Yan, Patrick Pynadath et al.

NEURIPS 2025arXiv:2506.22666
1
citations

VIKING: Deep variational inference with stochastic projections

Samuel Matthiesen, Hrittik Roy, Nicholas Krämer et al.

NEURIPS 2025arXiv:2510.23684

$\mathtt{VITS}$ : Variational Inference Thompson Sampling for contextual bandits

Pierre Clavier, Tom Huix, Alain Oliviero Durmus

ICML 2024

Accelerating Convergence in Bayesian Few-Shot Classification

Tianjun Ke, Haoqun Cao, Feng Zhou

ICML 2024arXiv:2405.01507
2
citations

Adaptive Robust Learning using Latent Bernoulli Variables

Aleksandr Karakulev, Dave Zachariah, Prashant Singh

ICML 2024arXiv:2312.00585
1
citations

A Differentiable Partially Observable Generalized Linear Model with Forward-Backward Message Passing

Chengrui Li, Weihan Li, Yule Wang et al.

ICML 2024arXiv:2402.01263
3
citations

Amortized Variational Deep Kernel Learning

Alan Matias, César Lincoln Mattos, Joao Paulo Gomes et al.

ICML 2024

Bayesian Exploration Networks

Mattie Fellows, Brandon Kaplowitz, Christian Schroeder de Witt et al.

ICML 2024arXiv:2308.13049
4
citations
PreviousNext