Enhancing End-to-End Autonomous Driving with Latent World Model

77
citations
#196
in ICLR 2025
of 3827 papers
7
Top Authors
6
Data Points

Abstract

In autonomous driving, end-to-end planners directly utilize raw sensor data, enabling them to extract richer scene features and reduce information loss compared to traditional planners. This raises a crucial research question: how can we develop better scene feature representations to fully leverage sensor data in end-to-end driving? Self-supervised learning methods show great success in learning rich feature representations in NLP and computer vision. Inspired by this, we propose a novel self-supervised learning approach using the LAtent World model (LAW) for end-to-end driving. LAW predicts future latent scene features based on current features and ego trajectories. This self-supervised task can be seamlessly integrated into perception-free and perception-based frameworks, improving scene feature learning while optimizing trajectory prediction. LAW achieves state-of-the-art performance across multiple benchmarks, including real-world open-loop benchmark nuScenes, NAVSIM, and simulator-based closed-loop benchmark CARLA. The code will be released.

Citation History

Jan 25, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
77+77
Feb 13, 2026
77